# **MATHEMATICAL MACHINES**

# **Computing**

- Most computing consists in actions that modify data:
  - ► The data is textual
  - ► The actions are discrete: well-defined and single-step.

### **Computing**

- Most computing consists in actions that modify data:
  - ► The data is textual
  - ► The actions are discrete: well-defined and single-step.
- The data is textual because discrete data has textual representation. (Though not all computing is discrete, eg Analog Computing is not.)

# **Acceptors**

• What algorithms do.

### **Acceptors**

- What algorithms do.
- Two main options: acceptors and transducers.
- An <u>acceptor</u> is an algorithm that takes a textual input (representing input data) and upon termination may or may not issue **accept** as output.

### Acceptors

- What algorithms do.
- Two main options: acceptors and transducers.
- An <u>acceptor</u> is an algorithm that takes a textual input (representing input data) and upon termination may or may not issue **accept** as output.
- An acceptor that terminates for all input is a **decider**.
- When a decider terminate for an input without accepting we say that it <u>rejects</u> the input.
- A decider is thus a solution for a decision problem.

#### **Transducers**

• A *transducer* is an algorithm that takes strings as input, and upon termination yields a string as output.

#### **Transducers**

- A *transducer* is an algorithm that takes strings as input, and upon termination yields a string as output.
- A transducer computes a *partial-function* (i.e. univalent mapping).

#### **Transducers**

- A *transducer* is an algorithm that takes strings as input, and upon termination yields a string as output.
- A transducer computes a *partial-function* (i.e. univalent mapping).
- An acceptor can be viewed as a transducer
   with accept as the only possible output;
   and a decider as a total transducer with accept and reject
   as the only possible outputs.

- What is the simplest possible mathematical machine:
  - ► Transducer, or acceptor?

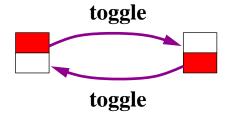
- What is the simplest possible mathematical machine:
  - ► Transducer, or acceptor?
  - ► Fixed, or expandable external memory?

- What is the simplest possible mathematical machine:
  - ► Transducer, or acceptor?
  - ► Fixed, or expandable external memory?
  - ► Random-access, or sequential reading?

- What is the simplest possible mathematical machine:
  - ► Transducer, or acceptor?
  - ► Fixed, or expandable external memory?
  - ► Random-access, or sequential reading?
- We start with the *automaton*, an acceptor with no external memory that reads its input sequentially!

- What is the simplest possible mathematical machine:
  - ► Transducer, or acceptor?
  - ► Fixed, or expandable external memory?
  - ► Random-access, or sequential reading?
- We start with the automaton,
   an acceptor with no external memory that reads its input sequentially!
- This model captures the behavior of many familiar physical devices.
   Let's look at a couple of very simple ones.

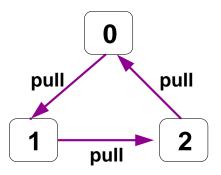
#### The electric switch



 The position of the switch is inverted after an odd number of toggles, and remains unchanged after an even number.

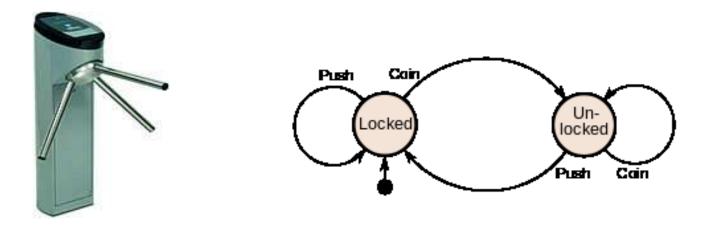
## The ceiling fan

A ceiling fan with manual cord-controlled:
 The speed is incremented (mod 2) with each pull.



F23 7

#### The toll-turnstile



- The turnstile can be in one of two states: locked or unlocked.
- The action *insert token* changes the state *locked* into *unlocked*.
- The action *push and pass* changes the state *unlocked* into *locked*.

F23 8

#### **States**

- A core concept of mathematical machines is the state.
- E.g. a state of an elevator might consist of its position, motion (up, down, rest), upcoming destinations, time idle, etc.
- States are often labeled, for convenience, but don't have to be.

#### States

- A core concept of mathematical machines is the state.
- E.g. a state of an elevator might consist of its position, motion (up, down, rest), upcoming destinations, time idle, etc.
- States are often labeled, for convenience, but don't have to be.
- Given a practical problem, deciding what are the relevant "states" often requires careful analysis.
- But once a mathematical model is distilled, the <u>states</u> become an abstraction, which we can represent graphically, e.g. by a circle.

• A transition-rule

is a mapping from states to states. We label each transition-rule by an identifier.

• A transition-rule

is a mapping from states to states. We label each transition-rule by an identifier.

• We focus for now on transitions that are *functions*, i.e. univalent and total.

• A transition-rule

is a mapping from states to states. We label each transition-rule by an identifier.

- We focus for now on transitions that are *functions*,
   i.e. univalent and total.
- A pair of states related by a transition-rule a is an action of a.

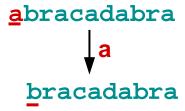
• A transition-rule

is a mapping from states to states. We label each transition-rule by an identifier.

- We focus for now on transitions that are *functions*,
   i.e. univalent and total.
- A pair of states related by a transition-rule a is an action of a.
- For the toll-turnstile and the stopwatch the transition-rules are determined by certain human actions.

#### Textual form of transitions

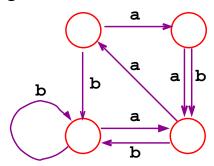
- Since all finite discrete structures have simple textual codes, we can assume that:
  - 1. All input data is textual
  - 2. Each transition is coded by a single reserved letter
  - 3. The action of the transition labeled a is the reading (i.e. consumption) of a, much like the movement of a cursor.



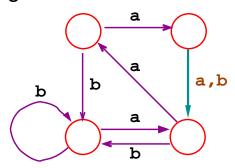
• A *transition-system* consists of a set of states and transition-rules over them.

- A **transition-system** consists of a set of states and transition-rules over them.
- So a transition-system can be represented as a labeled di-graph:
   The nodes are the states,
   and the the actions are labeled edges.

- A *transition-system* consists of a set of states and transition-rules over them.
- So a transition-system can be represented as a labeled di-graph:
   The nodes are the states,
   and the the actions are labeled edges.
- When all transition-rules are functions, there is exactly one edge for each state and action:



- A *transition-system* consists of a set of states and transition-rules over them.
- So a transition-system can be represented as a labeled di-graph:
   The nodes are the states,
   and the the actions are labeled edges.
- When all transition-rules are functions, there is exactly one edge for each state and action:

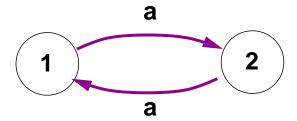


We merge arrow-labels for readability.

### Example: Detecting an odd number of actions

• Consider the switch.

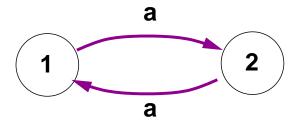
We represent the transition "toggle" by the letter a, and label the states as 1 and 2:



#### Example: Detecting an odd number of actions

Consider the switch.

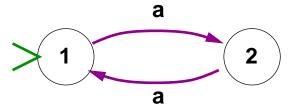
We represent the transition "toggle" by the letter a, and label the states as 1 and 2:



- The device reads strings of a's, and with each letter read it switch state.
- Reading odd number of a 's leads to the opposite state.
- The physical nature of the toggle action is no longer present, and is indeed irrelevant.

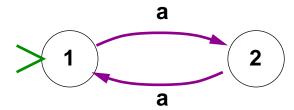
### Start state and accepting states

We intend to start at a particular state,
 so we single out one state as the <u>initial</u> (starting) state,
 indicated graphically by an incoming arrow.



### Start state and accepting states

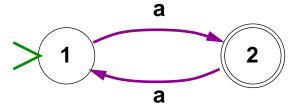
We intend to start at a particular state,
 so we single out one state as the *initial* (starting) state,
 indicated graphically by an incoming arrow.



Where do the strings of length 1,3,... odd n lead?

### Start state and accepting states

We intend to start at a particular state,
 so we single out one state as the *initial* (starting) state,
 indicated graphically by an incoming arrow.

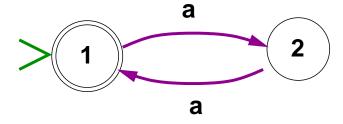


- The strings of odd length leads to state 2, so to accept just those strings we'd set 2 as the unique accepting state.
- We do this graphically by doubling the contour of state 2.
- In general there can be several accepting states.

F23 14

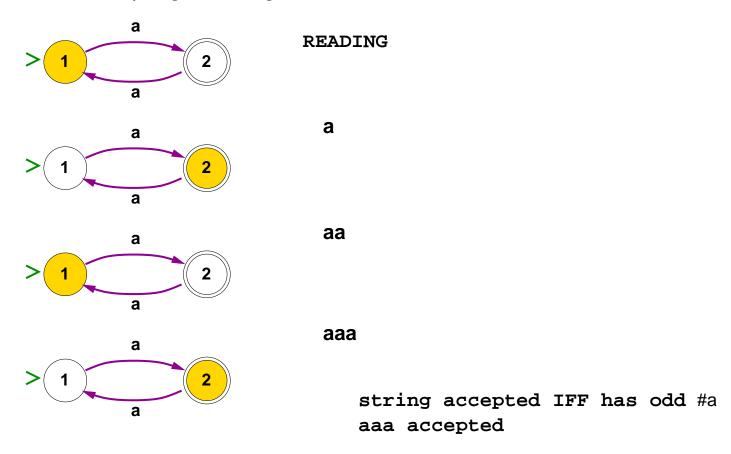
### Initial state can be accepting

- It is possible that the initial state is accepting.
- To accept the strings of even length set 1 as the only accepting state:



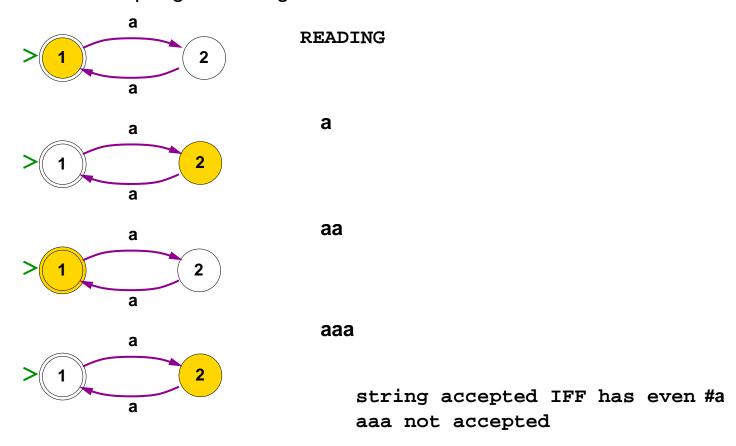
#### The device in action

• Device accepting odd length:



#### The device in action

• Device accepting even length:



#### Definition of automata

- An automaton, aka deterministic finite automaton (DFA) consists of
  - ► An alphabet  $\Sigma$ .

#### Definition of automata

- An automaton, aka deterministic finite automaton (DFA) consists of
  - $\blacktriangleright$  An alphabet  $\Sigma$ .
  - $\blacktriangleright$  A non-empty finite set Q of objects called **states**.
  - ▶ One state  $s \in Q$  singled out as **initial-state** (or **initial-state**).
  - $\blacktriangleright$  A set  $A \subseteq S$  of states singled out as **accepting states**.

#### Definition of automata

- An automaton, aka deterministic finite automaton (DFA) consists of
  - $\blacktriangleright$  An alphabet  $\Sigma$ .
  - ► A non-empty finite set *Q* of objects called *states*.
  - ▶ One state  $s \in Q$  singled out as **initial-state** (or **initial-state**).
  - ightharpoonup A set  $A\subseteq S$  of states singled out as **accepting states**.
  - A transition function  $\delta: Q \times \Sigma \to Q$ . Given state  $q \in Q$  and input-symbol  $\sigma$   $\delta(q, \sigma)$  is the new (target) state.
- We also write  $q \stackrel{\sigma}{\to} p$  for  $\delta(q, \sigma) = p$ . Note: p may be the same as q.

F23

• Formally, M above is a tuple  $(\Sigma,Q,s,A,\delta)$  of its components.

- Formally, M above is a tuple  $(\Sigma,Q,s,A,\delta)$  of its components.
- M is over the alphabet  $\Sigma$ . We don't mention  $\Sigma$  when irrelevant or clear.

- Formally, M above is a tuple  $(\Sigma, Q, s, A, \delta)$  of its components.
- M is over the alphabet  $\Sigma$ . We don't mention  $\Sigma$  when irrelevant or clear.
- Automaton is of Greek origin:

auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

- Formally, M above is a tuple  $(\Sigma, Q, s, A, \delta)$  of its components.
- M is over the alphabet  $\Sigma$ . We don't mention  $\Sigma$  when irrelevant or clear.
- Automaton is of Greek origin:

auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

Since automata play a central role,

they've acquired over time several alternative names, in particular *deterministic finite automaton (DFA)*.which we'll frequently use.

F23

### Textual applications

- Pattern matching, search engines
- Lexical analysis for compilation
- Data compression
- Automatic translation

#### Software systems

- Cyber-security
- System planning
- Information streaming
- Bio-informatics

### Hardware systems

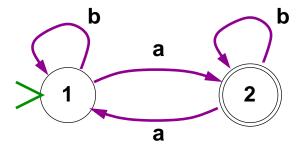
- Circuit design
- Robotics

#### Verification

- System modeling
- Verification of communication protocols
- Verification of embedded systems
- Model checking

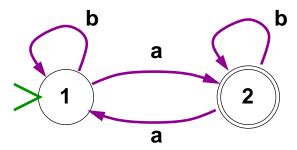
## Example of a formal description

• Here's an automaton M over  $\Sigma = \{a,b\}$  that accepts strings with an odd number of a's (and no others).



### Example of a formal description

• Here's an automaton M over  $\Sigma = \{a,b\}$  that accepts strings with an odd number of a's (and no others).



- Its formal definition:  $M=(\Sigma,Q,s,A,\delta)$  where
  - $\star \Sigma = \{a,b\}$
  - $\star Q = \{1, 2\}$
  - $\star s = 1$
  - $\star A = \{2\}$

F23

• Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function  $\delta$ .

- Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function  $\delta$ .
- The steps of an automaton change just the state, and the implicit move to the next input symbol.
- Since the transition mapping of an automaton is a function, there is exactly one next-state for each symbol read.

- Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function  $\delta$ .
- The steps of an automaton change just the state, and the implicit move to the next input symbol.
- Since the transition mapping of an automaton is a function, there is exactly one next-state for each symbol read.
- Computation terminates iff the end of the input string is reached.

- Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function  $\delta$ .
- The steps of an automaton change just the state, and the implicit move to the next input symbol.
- Since the transition mapping of an automaton is a function, there is exactly one next-state for each symbol read.
- Computation terminates iff the end of the input string is reached.
- The essence of a DFA is in its being an online acceptor.

### **Traces**

• If  $w = \sigma_1 \cdots \sigma_n$  then we write  $q \xrightarrow{\sigma_1 \cdots \sigma_n} p$  to state that

$$q \xrightarrow{\boldsymbol{\sigma_1}} r_1 \xrightarrow{\boldsymbol{\sigma_2}} r_2 \cdots r_{n-1} \xrightarrow{\boldsymbol{\sigma_n}} p$$

for some states  $r_1, \ldots, r_{n-1}$ .

#### **Traces**

• If  $w = \sigma_1 \cdots \sigma_n$  then we write  $q \xrightarrow{\sigma_1 \cdots \sigma_n} p$  to state that

$$q \xrightarrow{\boldsymbol{\sigma_1}} r_1 \xrightarrow{\boldsymbol{\sigma_2}} r_2 \cdots r_{n-1} \xrightarrow{\boldsymbol{\sigma_n}} p$$

for some states  $r_1, \ldots, r_{n-1}$ .

• The sequence of states  $q, r_1, r_2, \cdots r_{n-1}, p$  is a *state-trace* of the automaton.

#### Inductive definition of traces

- The ternary relation  $q \stackrel{w}{\to} p$  can be defined inductively, by recurrence on w:
  - $ightharpoonup q \xrightarrow{\varepsilon} q$
  - ▶ If  $\delta(q, \sigma) = p$  that is  $q \xrightarrow{\sigma u} r$ , and  $p \xrightarrow{u} r$  then  $p \xrightarrow{\sigma} q$ .

#### Inductive definition of traces

• The ternary relation  $q \stackrel{w}{\rightarrow} p$  can be defined inductively, by recurrence on w:

- $ightharpoonup q \xrightarrow{\varepsilon} q$
- ▶ If  $\delta(q, \sigma) = p$  that is  $q \xrightarrow{\sigma u} r$ , and  $p \xrightarrow{u} r$  then  $p \xrightarrow{\sigma} q$ .
- This definition invokes no auxiliary data that might be modified during execution.
- No mathematical machine we'll encounter (except NFAs) has such a definition:

They all are based on a notion of *configuration*, which combines the machine's states with modifiable data.

F23

## Accepted strings, recognized languages

- For  $A\subseteq Q$  let's write  $q\stackrel{w}{\to} A$  when  $q\stackrel{w}{\to} p$  for some  $p\in A$ .
- M accepts w when  $s \xrightarrow{w} A$ .

### Accepted strings, recognized languages

- For  $A\subseteq Q$  let's write  $q\stackrel{w}{\to}A$  when  $q\stackrel{w}{\to}p$  for some  $p\in A$ .
- M accepts w when  $s \xrightarrow{w} A$ .
- ullet The language  $\overline{\mathit{recognized}}$  by M is

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$
$$= \{ w \in \Sigma^* \mid s \xrightarrow{w} A \}$$

• We re-use here the notation  $\mathcal{L}(\cdots)$  that we used for regular expressions.

#### Accepted strings, recognized languages

- For  $A\subseteq Q$  let's write  $q\stackrel{w}{\to}A$  when  $q\stackrel{w}{\to}p$  for some  $p\in A$ .
- M accepts w when  $s \xrightarrow{w} A$ .
- ullet The language  $\overline{\textit{recognized}}$  by M is

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$
$$= \{ w \in \Sigma^* \mid s \xrightarrow{w} A \}$$

- We re-use here the notation  $\mathcal{L}(\cdots)$  that we used for regular expressions.
- Two automata are **equivalent** if they recognize the same language.

1. Automata are acceptors: they produce no output.

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.

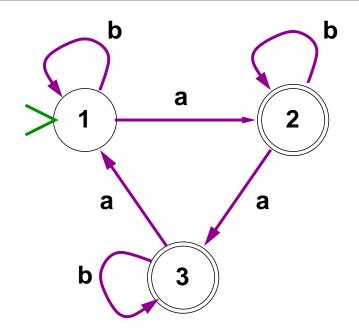
- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.
- 6. Computation stops when the input's end is reached.

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.
- 6. Computation stops when the input's end is reached.
- 7. No auxiliary memory or devices.

Only two are crucial: violating them changes computing's nature:

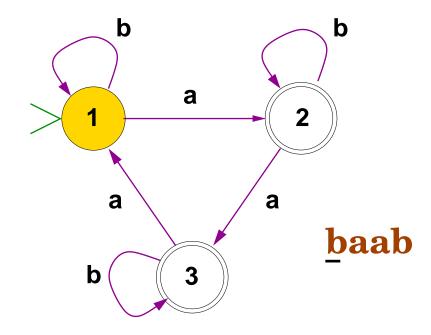
- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.
- 6. Computation stops when the input's end is reached.
- 7. No auxiliary memory or devices.

# Example: An automaton for Mod 3



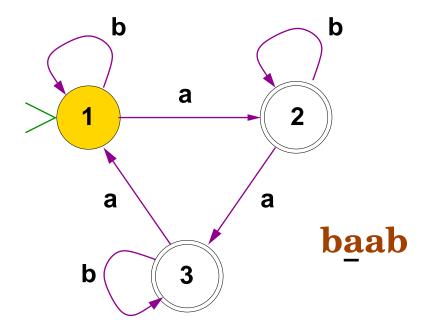
•  $w \in \{a,b\}^*$  accepted iff  $\#_a(w) \neq 0 \pmod{3}$ 

# Example of an accepted string



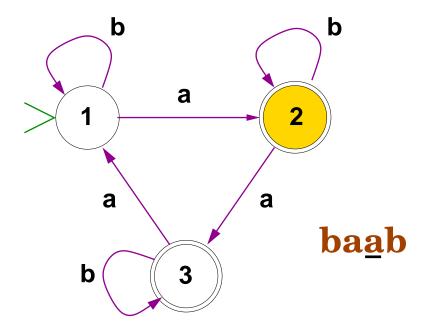
• State 1 (initial). Nothing read yet.

# An accepted string



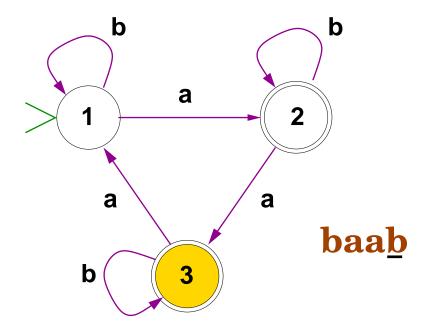
• Still state 1. Initial b read.

# An accepted string



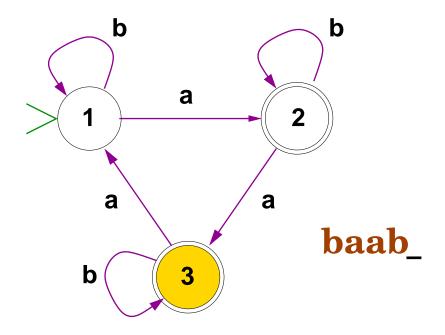
• Read ba, state 2.

# An accepted string



• Read baa, state 3.

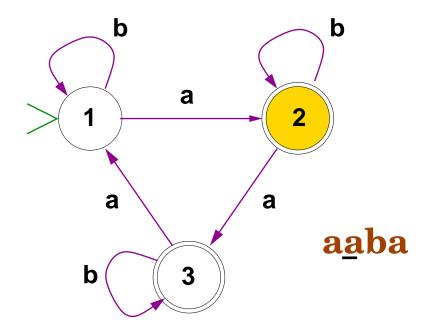
## An accepted string



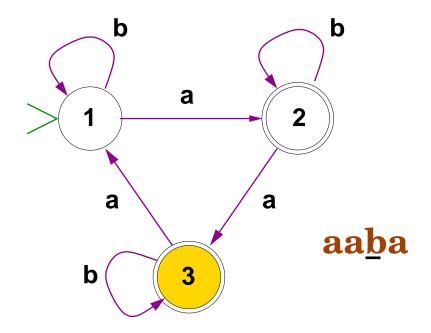
• Finished reading *baab*, state 3, accepted.



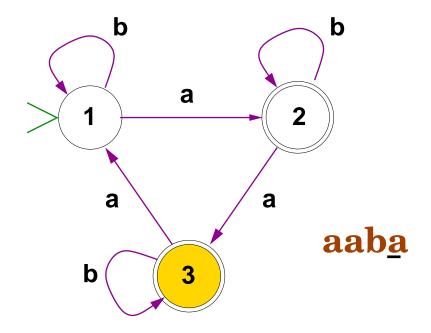
• State 1 (initial). Nothing read yet.



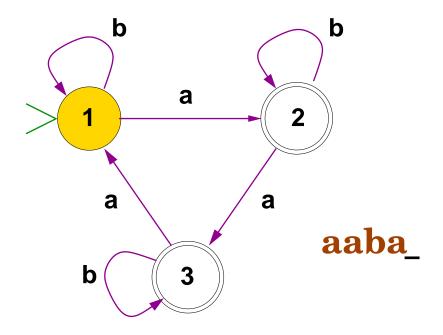
• Read a, State 2.



• Read aa, state 3.



• Read aab, state 3.



• Finished reading <a href="mailto:aaba">aaba</a>, state 1, not accepted.

### A computation trace

• For our example above, the computation for the string baab is

$$1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{a}} 2 \xrightarrow{\mathbf{a}} 3 \xrightarrow{\mathbf{b}} 3.$$

Abbreviated notation: 1 baab 3

• The computation for the string **aaba** is

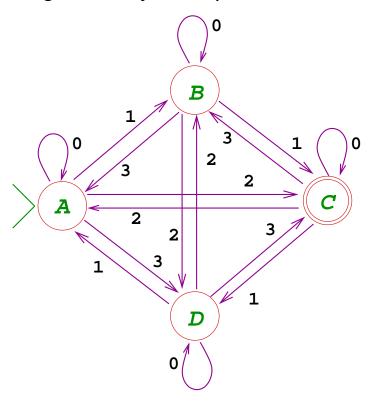
$$1 \xrightarrow{\mathbf{a}} 2 \xrightarrow{\mathbf{a}} 3 \xrightarrow{\mathbf{b}} 3 \xrightarrow{\mathbf{a}} 1$$

Abbreviated notation: 1 aba 3

F23

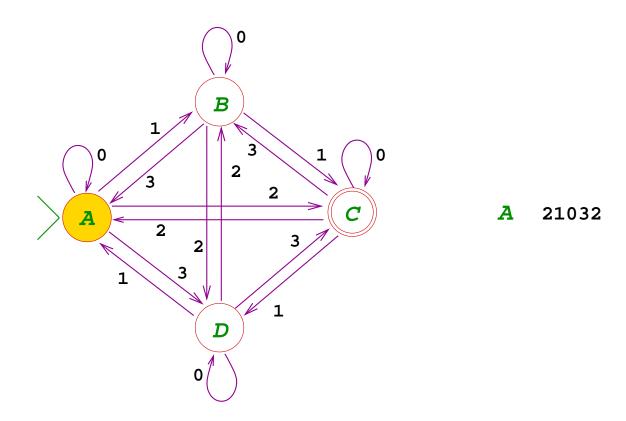
### Example: Addition mod 4

- The following automaton is over the alphabet {0, 1, 2, 3}
- It accept a string of digits iff they add up to 2 modulo 4.

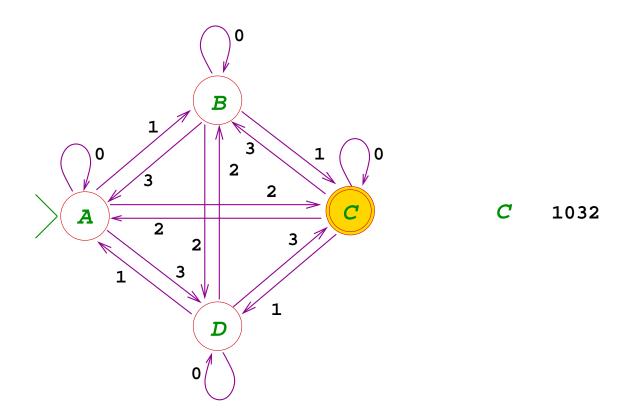


F23

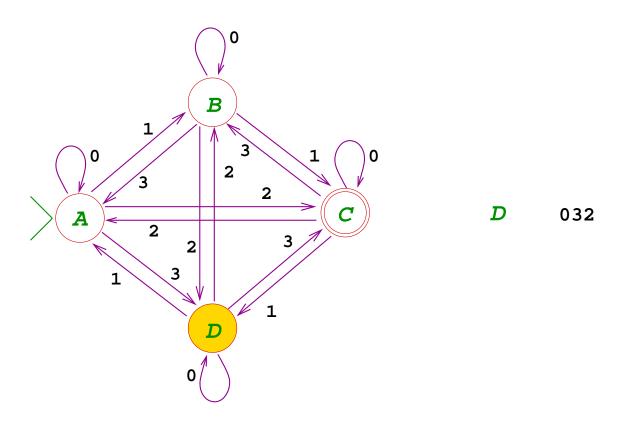
• Reading input 21032 from initial state A:



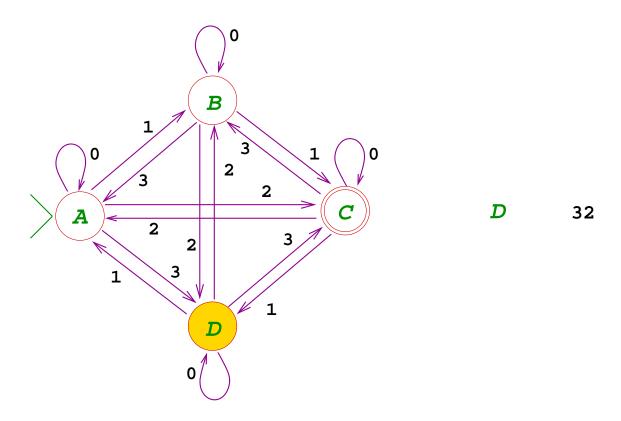
• Reads remaining string 1032:



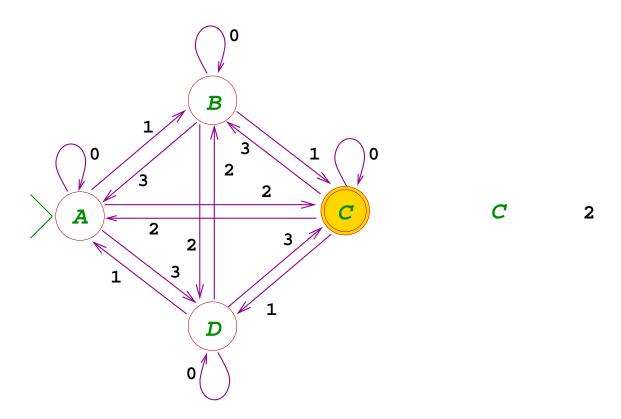
• Reads remaining string 032:



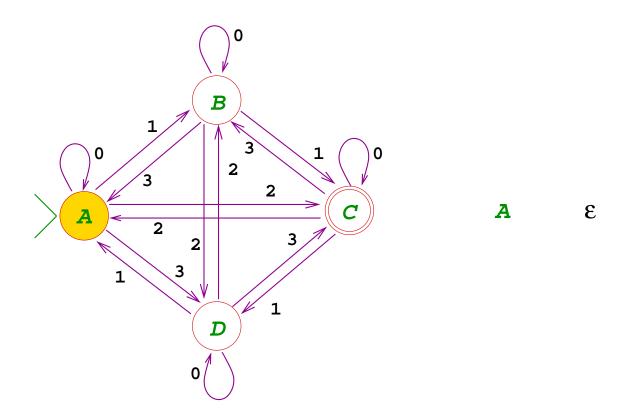
• Reads remainder 32:



#### • Reads remainder 2:

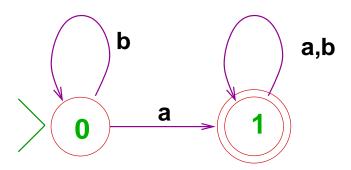


• Reads remainder *€* (empty string):



ullet Ends reading. A not an accept-state, 21032 not accepted.

### Additional examples



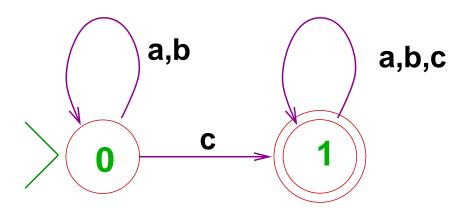
$$0 \xrightarrow{\mathbf{b}} 0 \xrightarrow{\mathbf{a}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{a}} 1$$

$$0 \xrightarrow{\mathbf{b}} 0 \xrightarrow{\mathbf{b}} 0 \xrightarrow{\mathbf{b}} 0 \xrightarrow{\mathbf{b}} 0$$

What is the language recognized?

F23

## Three letter example



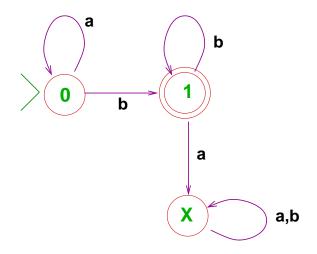
$$0 \xrightarrow{\mathbf{a}} 0 \xrightarrow{\mathbf{b}} O \xrightarrow{\mathbf{a}} 0 \xrightarrow{\mathbf{c}} 1 \xrightarrow{\mathbf{b}} 1$$
$$0 \xrightarrow{\mathbf{c}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{a}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{a}} 1$$

What are the language accepted?

F23

47

#### An automaton with a sink



$$0 \xrightarrow{\mathbf{a}} 0 \xrightarrow{\mathbf{a}} 0 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{b}} 1$$

$$0 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{a}} X \xrightarrow{\mathbf{b}} X \xrightarrow{\mathbf{a}} X$$

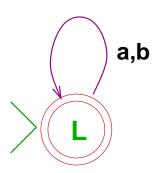
Note: Every state has exactly one arrow for every  $\sigma \in \Sigma$ .

• A **sink** is a non-accepting state with all outgoing transitions pointing to itself.

F23

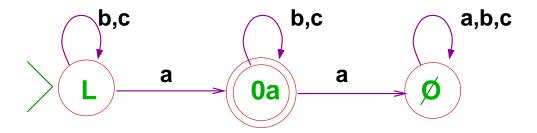
# Example

Here is a trivial automaton with a single state:



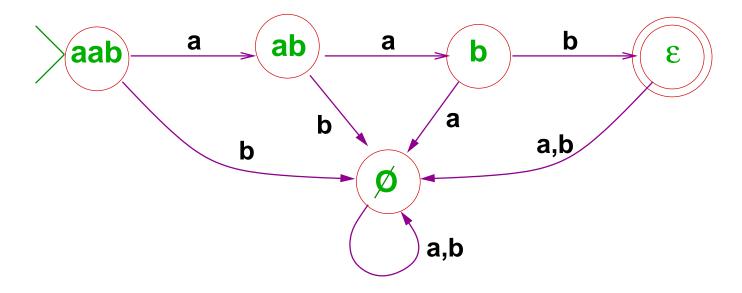
What strings are accepted?

# **Example**



accepts the strings with exactly one a, and no other.

# **Example**



accepts the string aab and no other.

# **CONSTRUCTING AUTOMATA**

#### From a language to arecognizing automaton

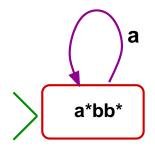
- We give a method that, given a language  $m{L}$ , attempts to construct a DFA  $m{M}$  recognizing  $m{L}$ .
- If and when the process teminates, we obtain such an  $oldsymbol{M}$  .
- We start with a couple of non-trivial examples, before articulating the method and giving more examples.

#### Example: a's precede b's



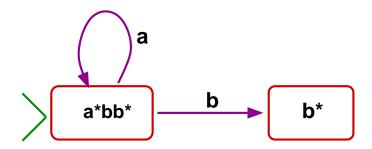
- Construct an automaton recognizing L(a\*bb\*). That is, accepting strings of a 's followed by one or more b 's, and only those.
- The initial state is the declaration of this goal.
- What will be an updated goal after reading an a?

# Reading an a



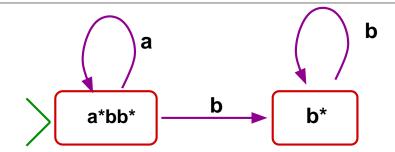
- The goal is unchanged!.
- But what happens if we read a b?

# Reading a b



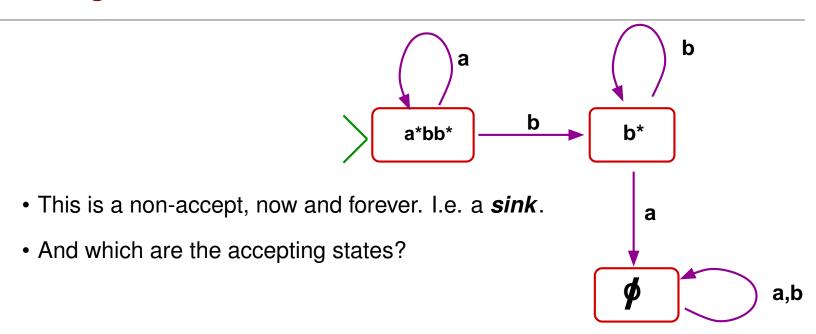
- A new goal: from now on only **b** 's, any number.
- What if we read a b now?

# Reading another b

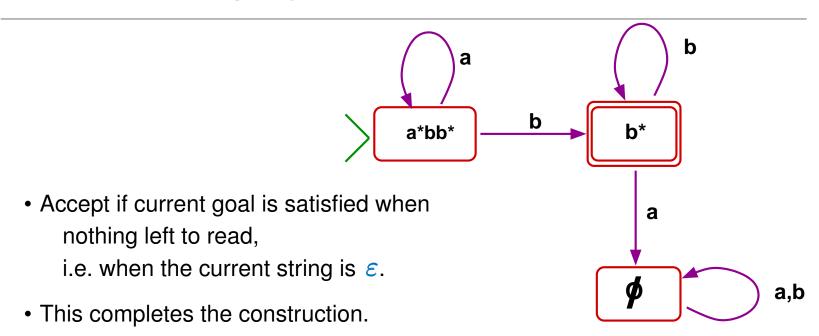


- No change.
- And what if, instead, we read an a?

### Reading an a instead



### What are the accepting states



 $\mathbf{0}$   $\sigma w \sigma$ 

8

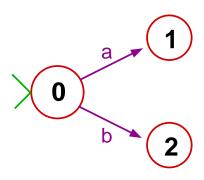
\*



• Construct an automaton accepting strings  $\sigma w \sigma$ , i.e. with last letter identical to the first, and **no others**.

- The initial state is the declaration of this goal.
- What will be the updated goals after reading the first letter?

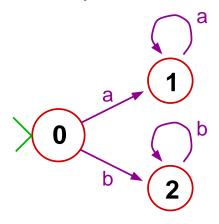
Reading the first letter:



- 0 σwσ1 ε | wa
- **2** | wb

- Either this is the last letter, or else it repeats at the end.
- What if we now read this letter again?

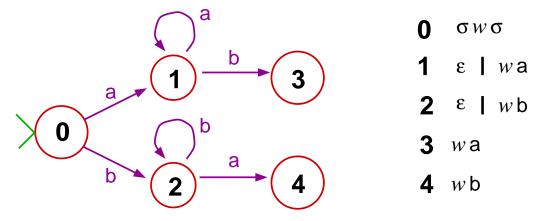
Sought letter repeated:



- $\mathbf{0}$   $\sigma w \sigma$
- **1** ε | wa
- **2** ε | w b

- The goal does not change.
- And what about the opposite letter *now*?

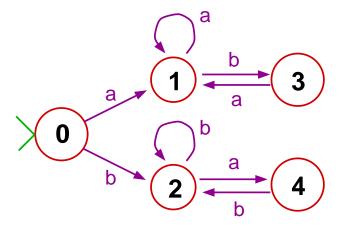
Reading opposite letter:



\*

• The option of not reading further has been blocked.

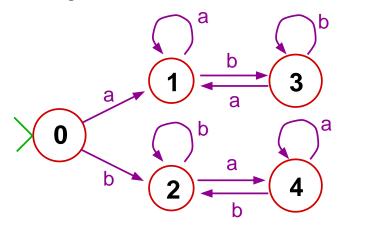
Opposite letter repeating:



- $\mathbf{0}$   $\sigma w \sigma$
- **1** ε | wa
- **2** ε | wb
- **3** wa
- **4** wb

- But if the sought letter is read now, the previous goal is restored.
- And if we keep reading the wrong letter?

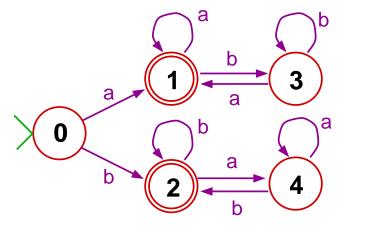
#### Return to sought letter:



- $\mathbf{0}$   $\sigma w \sigma$
- **1** ε | wa
- **2** ε | wb
- **3** wa
- **4** wb

- No change of goal.
- What are the accepting states?

The accepting states:



**0** σωσ

**1** ε | wa

**2** ε | wb

**3** wa

**4** wb

- Accept if current goal is satisfied when nothing left to read.
- This completes the construction.

#### Goal oriented automaton construction

• When you head to an unfamiliar destination, would you prefer the GPS map to display the road already covered, or rather the road ahead?

#### Goal oriented automaton construction

- When you head to an unfamiliar destination,
   would you prefer the GPS map to display the road already covered,
   or rather the road ahead?
- Programming is a goal oriented process.

The relevant mission is to achieve a goal.

The initial task of an acceptor for L is

"accept the strings in L and no others"!

#### Goal oriented automaton construction

- When you head to an unfamiliar destination, would you prefer the GPS map to display the road already covered, or rather the road ahead?
- Programming is a *goal oriented* process.
   The relevant mission is to achieve a goal.
   The initial task of an acceptor for *L* is "accept the strings in *L* and no others"!
- The tasks are adjusted as the input string is read.
   Each task is of the form

the string ahead leads into a string in  $oldsymbol{L}$ 

F23 56

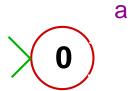
#### Identifying accepting tasks

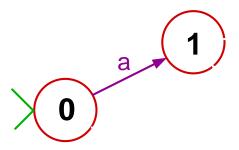
- The development above updates states (conditions) as required when symbols  $\sigma$  are read.
- A string  $x = \sigma u$  satisfying the current condition (=state) leads to A iff u started at the next condition leads to A.
- So the accepting conditions are the ones that are satisfied when reading ends, i.e. when the string-ahead is  $\varepsilon$ .

F23 57

#### state dictionary

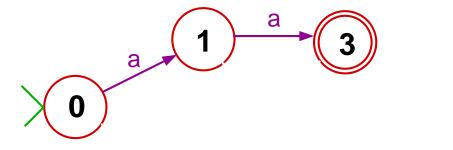
 $\mathbf{0}$  wso





 $\mathbf{0}$  w  $\mathbf{\sigma}$ 

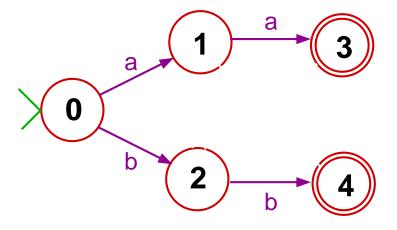
**1** a | w σσ



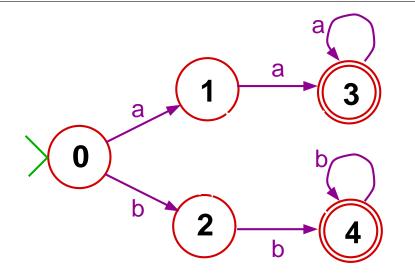
 $\mathbf{0}$  w  $\mathbf{\sigma}$ 

**1** a | w σσ

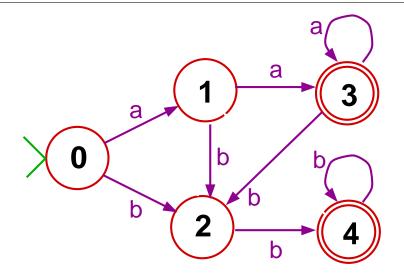
**3** ε | a | w σσ



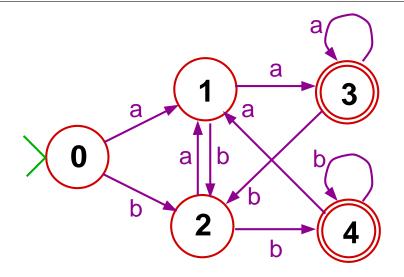
- $\mathbf{0}$  woo
- a | w σσ
- b | w σσ
- ε | a | w σσ
- ε | b | wσσ



- $\mathbf{0}$   $w \sigma \sigma$
- a | w σσ
- b | w σσ
- ε | a | wσσ
- ε | b | wσσ



- $\mathbf{0}$   $w \sigma \sigma$
- a | w σσ
- b | w σσ
- ε | a | wσσ
- ε | b | wσσ

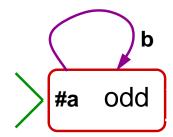


- $\mathbf{0}$  w  $\mathbf{o}\mathbf{o}$
- **1** a | w σσ
- **2** b | w σσ
- **3** ε | a | w σσ
- **4** ε | b | wσσ

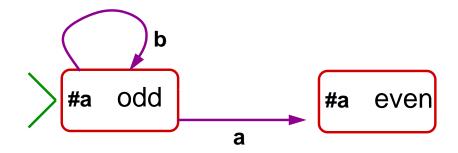
F23 58



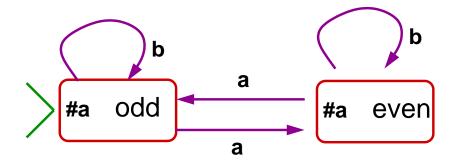
► Initial task: accept strings with an odd number of a's



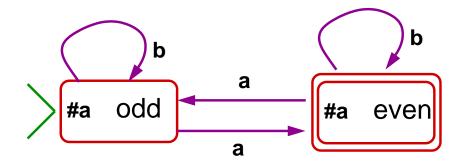
► Reading a b does not change the task



► Reading an a revises the task to: accept strings with an even number of a's



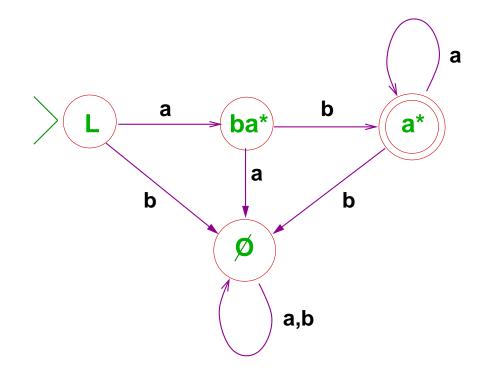
► Same reasoning for the "even" task



► Accept description fulfilled by *ε*.

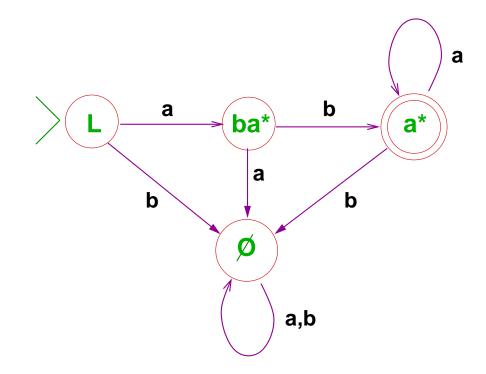
F23 59

## Example: aba\*



Accepts the strings of the form  $aba^n$  with  $n \ge 0$ , and no others.

### Example: aba\*



Accepts the strings of the form  $aba^n$  with  $n \ge 0$ , and no others.

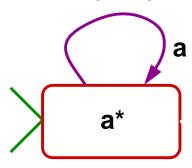
• Note the sink at the bottom of the diagram.

Construct an automaton recognizing  $\mathcal{L}(a^*)$  as a sub-language of  $\{a,b\}^*$ 



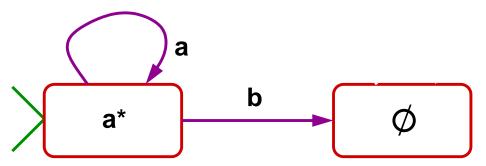
► Initial task: accept strings of a's

Construct an automaton recognizing  $\mathcal{L}(a^*)$  as a sub-language of  $\{a,b\}^*$ 



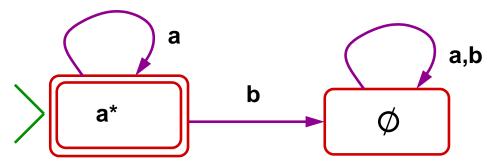
► Reading an a does not change the task

Construct an automaton recognizing  $\mathcal{L}(a^*)$  as a sub-language of  $\{a,b\}^*$ 



► Reading a b revises the task to not accepting anything. A sink.

Construct an automaton recognizing  $\mathcal{L}(a^*)$  as a sub-language of  $\{a,b\}^*$ 



► No escape from the sink

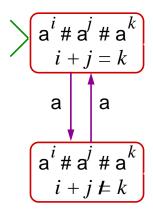
F23 61

Automaton over  $\{a, \#\}$  recognizing

$$\{a^i \# a^j \# a^k \mid i+j=k \mod 2\}$$

Automaton over  $\{a, \#\}$  recognizing

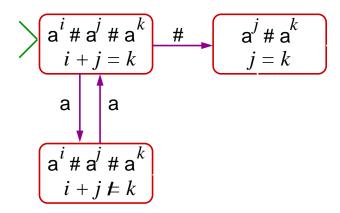
$$\{a^i \# a^j \# a^k \mid i+j=k \mod 2\}$$



Reading a's toggles between equlity and inequality of parities.

Automaton over  $\{a, \#\}$  recognizing

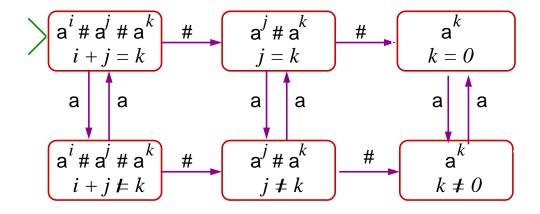
$$\{a^i \# a^j \# a^k \mid i+j=k \mod 2\}$$



Reading the separator # means i = 0.

Automaton over  $\{a, \#\}$  recognizing

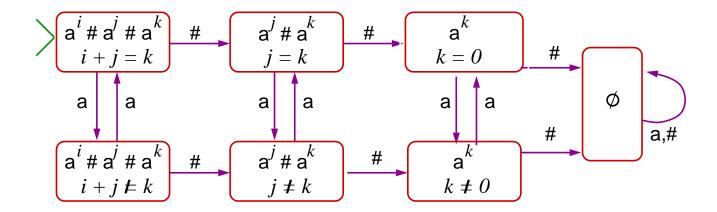
$$\{a^i \# a^j \# a^k \mid i+j=k \mod 2\}$$



The same arguments are repeated

Automaton over  $\{a, \#\}$  recognizing

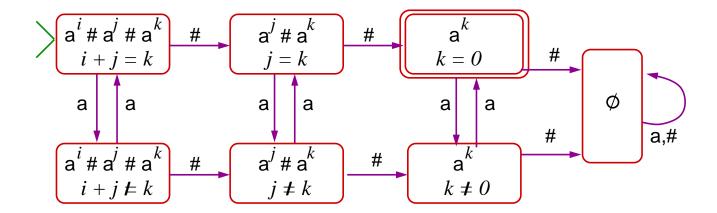
$$\{a^i \# a^j \# a^k \mid i+j=k \mod 2\}$$



Encountering an extra separator leads to a sink

Automaton over  $\{a, \#\}$  recognizing

$$\{a^i \# a^j \# a^k \mid i+j=k \mod 2\}$$



The single one accepting state is the one satisfied by  $\varepsilon$ .

• The initial acceptance-condition is the language to be recognized.

- The initial acceptance-condition is the language to be recognized.
- Given a new acceptance-condition, each each  $\sigma \in \Sigma$  find what condition is required after reading  $\sigma$ .

- The initial acceptance-condition is the language to be recognized.
- Given a new acceptance-condition, each each  $\sigma \in \Sigma$  find what condition is required after reading  $\sigma$ .
- That is, a string  $\sigma u$  satisfies the current condition iff u satisfies the condition after  $\sigma$  is read.

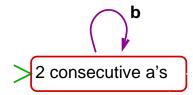
- The initial acceptance-condition is the language to be recognized.
- Given a new acceptance-condition, each each  $\sigma \in \Sigma$  find what condition is required after reading  $\sigma$ .
- That is, a string  $\sigma u$  satisfies the current condition iff u satisfies the condition after  $\sigma$  is read.
- A condition is an accepting state iff it is satisfied by €.

F23 63

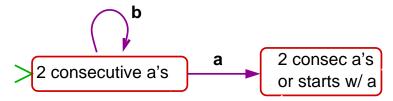
Construct an automaton recognizing  $\mathcal{L}(\Sigma^* \cdot aa \cdot \Sigma^*)$ 

2 consecutive a's

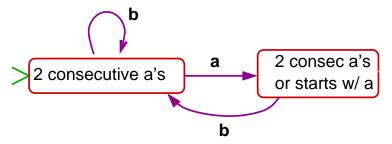
Reading **b** leaves the task unchanged:



But reading a opens two future options:

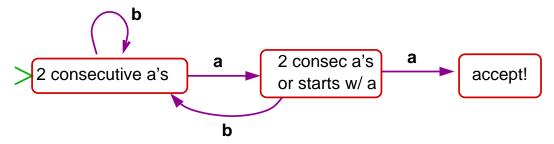


From these two options reading **b** kills the first:



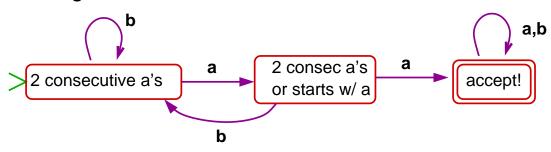
# Example: Two consecutive a's

But reading an a settles acceptance:

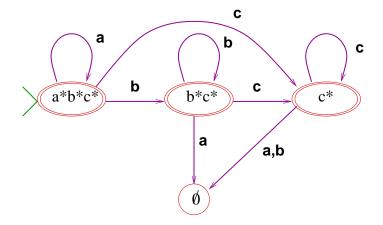


# Example: Two consecutive a's

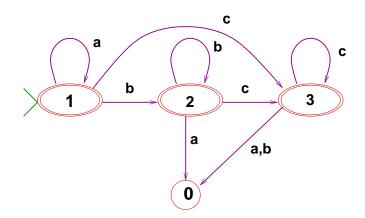
No further reading alterns that conclusion:



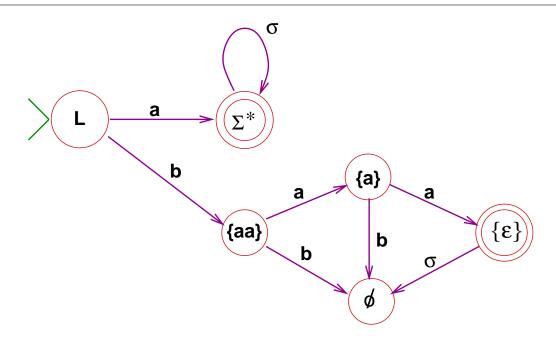
# Example 7: a\*b\*c\*



• Label states as we wish, with optional "dictionary."



# Example: Initial a or the string baa



## Example: Symbolic binary addition

- The following example illustrates the use of compound data as "symbols" of an alphabet.
- Consider a long addition in binary, such as \_ + 0 1 1 0 1 1 0 0 1 1

#### Example: Symbolic binary addition

- The following example illustrates the use of compound data as "symbols" of an alphabet.
- Consider a long addition in binary, such as + 0 1 1 0 1 1 0 0 1 1
- This table does not look like a string. But all such tables have height 3 we can consider each column as a "symbol" in the alphabet  $\Sigma=\{0,1\}^3$ , that is

$$\Sigma^3 = \left\{ \begin{array}{c} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

#### Example: Symbolic binary addition

- The following example illustrates the use of compound data as "symbols" of an alphabet.
- Consider a long addition in binary, such as \_ + 0 1 1 0 1 1 0 0 1 1
- This table does not look like a string. But all such tables have height 3 we can consider each column as a "symbol" in the alphabet  $\Sigma=\{0,1\}^3$ , that is

$$\Sigma^{3} = \left\{ \begin{array}{c} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

The long addition above can be consrued as the string
 1
 0
 1
 0
 1
 1

- Is there an automaton over  $\Sigma^3$  that recognizes the correct symbolic binary additions?
- ullet Construct an automaton M that accepts strings like

but not strings like

$$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

F23



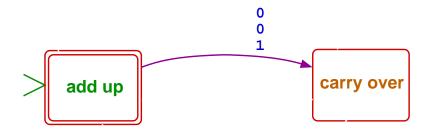
Start state is the goal that the table *adds-up*: remaining columns add up



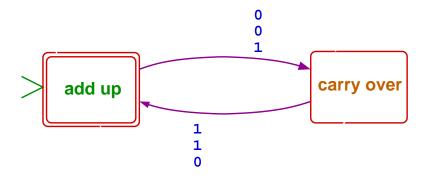
Start state is the goal that the table *adds-up*:

remaining columns add up

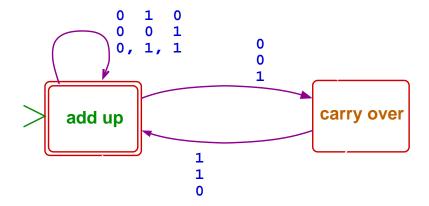
The main other state is *remaining columns yield carry-over* 



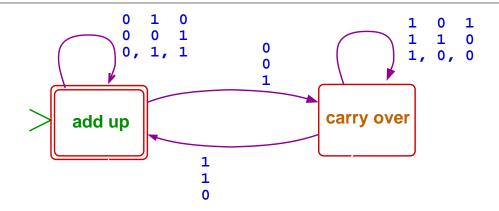
There is one column switching from *add-up* to *carry-over* 



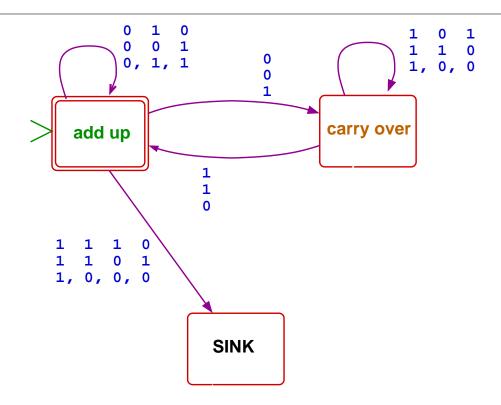
There is one column switching from *add-up* to *carry-over* and one column switching back from *carry-over* to *add-up* 



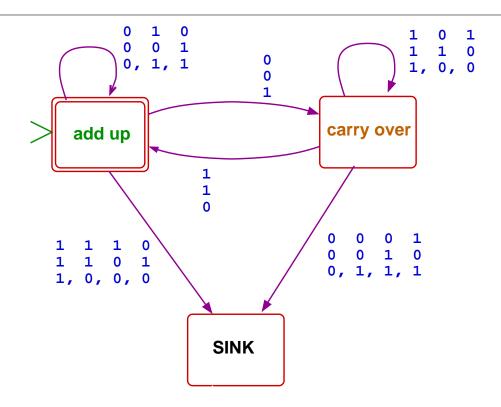
Three columns leave the add-up goal unchanged



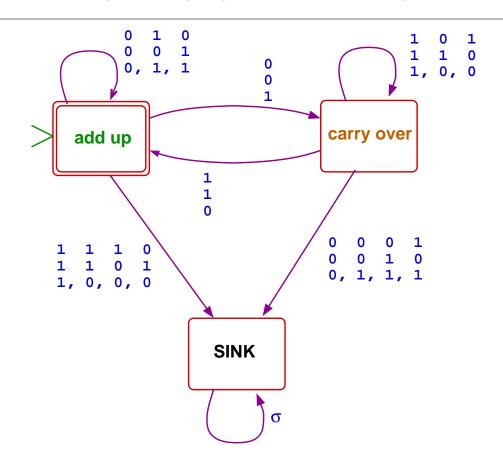
Three columns leave the *add-up* goal unchanged and three leaave *carry-over* unchaged



Four columns lead from *add-up* to a *sink* 



Four columns lead from *add-up* to a *sink* and four from *carry-over* to that *sink* 



Finally, *sink* is a sink.

- Consider every string  $w \in \{0, 1\}^*$  to be a binary numerals.
- The *numeric value*  $[w]_2$  of a string  $w=d_kd_{k-1}\cdots d_0$  is  $\Sigma_i$   $2^i$ .
- The numerals divisible by 2 are those that end with 0.

- Consider every string  $w \in \{0, 1\}^*$  to be a binary numerals.
- The *numeric value*  $[w]_2$  of a string  $w=d_kd_{k-1}\cdots d_0$  is  $\Sigma_i$   $2^i$ .
- Problem: Construct a DFA over {0, 1}\* that accepts the numerals divisble by 3.

- Consider every string  $w \in \{0, 1\}^*$  to be a binary numerals.
- The *numeric value*  $[w]_2$  of a string  $w=d_kd_{k-1}\cdots d_0$  is  $\Sigma_i$   $2^i$ .
- Problem: Construct a DFA over {0,1}\* that accepts the numerals divisble by 3.
- Preliminary: What is the value mod(3) of the digits, i.e. what is  $2^k \mod(3)$ .

- Consider every string  $w \in \{0, 1\}^*$  to be a binary numerals.
- The *numeric value*  $[w]_2$  of a string  $w=d_kd_{k-1}\cdots d_0$  is  $\Sigma_i$   $2^i$ .
- Problem: Construct a DFA over {0, 1}\* that accepts the numerals divisble by 3.
- Preliminary: What is the value mod(3) of the digits, i.e. what is  $2^k \mod(3)$ .

We have that  $4^k = 1$ , by induction on k.

$$\rightarrow 4^0 = 1$$

▶ If 
$$4^k = 3x + 1$$
 then  $4^{k+1} = 4(3x + 1) = 13x + 1$ .

- Consider every string  $w \in \{0, 1\}^*$  to be a binary numerals.
- The *numeric value*  $[w]_2$  of a string  $w=d_kd_{k-1}\cdots d_0$  is  $\Sigma_i$   $2^i$ .
- Problem: Construct a DFA over {0, 1}\* that accepts the numerals divisble by 3.
- Preliminary: What is the value mod(3) of the digits, i.e. what is  $2^k \mod(3)$ .

We have that  $4^k = 1$ , by induction on k.

So  $2^{2k} = 3x + 1$  for some x, and  $2^{2k+1} = 2(3x + 1) = 6x + 2$ .  $\therefore 2^n =_3 1$  for even n, and  $=_3 2$  for odd n.

• For any input  $m{w}$  the expectation depends on the parity of  $|m{w}|$  , the goals are therefore of the form

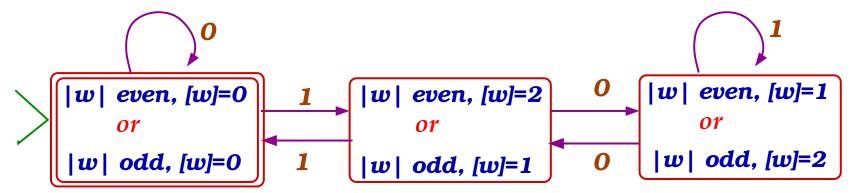
```
Either |w| is even and [w] =_3 x or |w| is odd and [w] =_3 y
Let's abbreviate this as (x,y).
```

• For any input w the expectation depends on the parity of |w|, the goals are therefore of the form

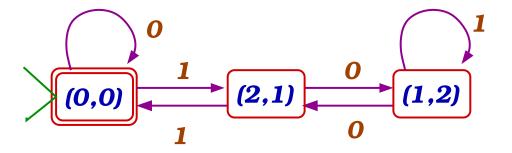
```
Either |w| is even and [w] =_3 x or |w| is odd and [w] =_3 y
Let's abbreviate this as (x,y).
```

• From the observation above it follows that  $(x, y) \stackrel{1}{\to} (y+2, x+1)$ , and  $(x, y) \stackrel{0}{\to} (y, x)$ .

• This yields the following DFA:







# RESIDUES AND THEIR APPLICATIONS

#### More examples of residues

- Take  $L=\,$  English words.
  - L/invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.
- $\epsilon$  is also in L/invent since invent is a word.
- The residue L/ad contains the strings vance, apt, opt, d, and  $\epsilon$ .
- Take  $L=\{ab\}$ , a singleton language. We have  $L/\varepsilon=\{ab\}, L/a=\{b\}$ , and  $L/ab=\varepsilon$ . For any other string w,  $L/w=\emptyset$ .
- For any language L we have  $L/\varepsilon=L$ :  $w\in L$  iff  $\varepsilon\in L/w$ .

#### More examples yet

```
egin{aligned} oldsymbol{L} = \{0,\,00,\,010\} \ & L/oldsymbol{arepsilon} = L \ & L/0 = \{oldsymbol{arepsilon},\,0,10\} \ & L/00 = \{oldsymbol{arepsilon}\} \ & L/01 = \{0\} \ & L/010 = \{oldsymbol{arepsilon}\} \ & L/w = \emptyset 	ext{for any other} w \end{aligned}
```

L/00 = L/010, so there are five (different) residues.

#### An example with language union

```
• L=\{\mathsf{a}w\mid w\in\Sigma^*\}\cup\{\mathsf{baa}\}. L/\varepsilon=L L/w=\Sigma^*\quad\text{if $w$ starts with a} L/\mathsf{b}=\{\mathsf{aa}\} L/\mathsf{ba}=\{\mathsf{a}\} L/\mathsf{baa}=\{\varepsilon\} L/w=\emptyset\quad\text{for any other $w$}
```

There are 6 residues.

L and  $\Sigma^*$  are infinite languages, the others are finite.

## A single-letter language

- $\Sigma = \{0, 1\}, L = \{0\}^*.$
- If  $w \in \Sigma^*$  contains 1 then  $L/w = \emptyset$ . Otherwise L/w = L. There are two residues.

#### A language based on occurrence count

```
 \begin{array}{l} \bullet \ L = \{w \in \{0,1\} \mid \#_0(w) \text{ is even } \}. \\ \text{If } \#_0(w) \text{ is even then } L/w \text{ is } L, \\ \text{otherwise } L/w = \{w \mid \#_0(w) \text{ is odd } \}. \end{array}
```

## Each state determines a language

• Consider a DFA M recognizing L and a state q in it. Some string x may lead from q to acceptance.

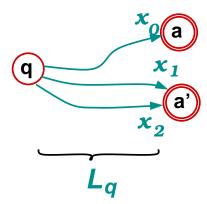


## Each state determines a language

• Consider a DFA M recognizing L and a state q in it. Some string x may lead from q to acceptance.



• Denote the set of all such x 's by  $L_q$ . In particular,  $L_s = L$  .



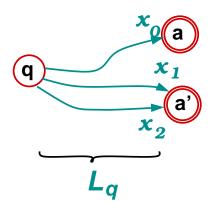
#### Each state determines a language

• Consider a DFA M recognizing L and a state q in it. Some string x may lead from q to acceptance.



• Denote the set of all such x 's by  $L_q$ . In particular,  $L_s = L$  .

• Note: We focus on the future of q, not its past! (The past would be the set of strings leading to q)

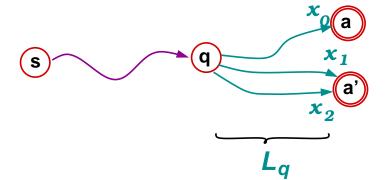


#### States and residues

• Now suppose that  $s \stackrel{w}{\to} q$ . A string  $w \cdot x$  is accepted by M iff  $x \in L_q$ .

### States and residues

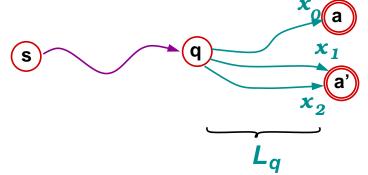
- Now suppose that  $s \stackrel{w}{\to} q$ . A string  $w \cdot x$  is accepted by M iff  $x \in L_q$ .
- $\boldsymbol{x}$  completes  $\boldsymbol{w}$  to a string in  $\boldsymbol{L}$ :



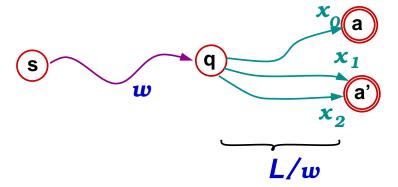
### States and residues

- Now suppose that  $s \stackrel{w}{\to} q$ .

  A string  $w \cdot x$  is accepted by M iff  $x \in L_q$ .
- $\boldsymbol{x}$  completes  $\boldsymbol{w}$  to a string in  $\boldsymbol{L}$ :



•  $L_q$  is L/w = the residue of L over w:



## A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a k-state DFA has  $\leqslant k$  residues.

## A property of recognized languages

- Theorem. (Myhill-Nerode) A language recognized by a k-state DFA has  $\leqslant k$  residues.
- Proof. If  $s \stackrel{u}{\to} q$  and  $s \stackrel{v}{\to} q$  then L/u = L/v .

### A property of recognized languages

- Theorem. (Myhill-Nerode) A language recognized by a k-state DFA has  $\leq k$  residues.
- Proof. If  $s \stackrel{u}{\to} q$  and  $s \stackrel{v}{\to} q$  then L/u = L/v.
- Consequently:

#### Theorem.

A language with infinitely many residues is not recognized.

• Let  $L = \{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}.$ 

- Let  $L = \{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}.$
- Consider the residues of L the form  $L/1^n$   $(n \ge 0)$ .

- Let  $L = \{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}.$
- Consider the residues of L the form  $L/1^n$   $(n \ge 0)$ .
- For each n we have

$$L/1^n = \{x \mid \#_0(x) = \#_1(x) + n\},$$

since to compensate for an initial substring of n 1's the rest of the string should have n extra 0's.

- Let  $L = \{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}.$
- Consider the residues of L the form  $L/1^n$   $(n \ge 0)$ .
- For each *n* we have

$$L/1^n = \{x \mid \#_0(x) = \#_1(x) + n\},$$

since to compensate for an initial substring of n 1's the rest of the string should have n extra 0's.

• If  $i \neq j$  then  $0^i \in L/1^i$  but  $\notin L/1^j$  so the two residues are **different**.

- Let  $L = \{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}.$
- Consider the residues of L the form  $L/1^n$   $(n \ge 0)$ .
- For each *n* we have

$$L/1^n = \{x \mid \#_0(x) = \#_1(x) + n\},$$

since to compensate for an initial substring of n 1's the rest of the string should have n extra 0's.

- If  $i \neq j$  then  $0^i \in L/1^i$  but  $\not\in L/1^j$  so the two residues are **different**.
  - :. L is not recognized, since it has infinitely many residues.

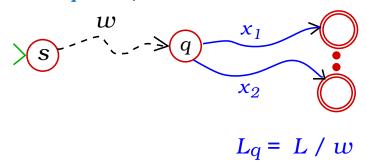
F23

#### States and residues

- We developed automata by thinking of residues as states.
- Let M be an automaton over  $\Sigma$ . For a state q of M define

$$L_q =_{\mathrm{df}} \{ x \in \Sigma^* \mid q \xrightarrow{x} A \}$$

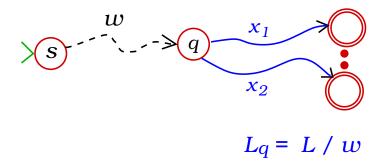
- In particular, for the start state  $L_s = L$ .
- If  $s \stackrel{w}{\to} q$  then  $L_q = L/w$ .



- ★ Each string leads from s to some state.
- $\star$  All strings leading from s to a state q have the same residue.

F23

### The Myhill-Nerode Theorem



- Every residue L/w is  $L_q$  for q as above.
- And two different residues  $L/w \neq L/x$  must correspond to two different states.
- So we have an injection that maps residues to states,
   I.e. the number of residues is bounded by the number of states.
- Theorem. (John Myhill and Anil Nerode (1958)) (simplified and rephrased):  $\mathcal{L}(M)$  cannot have more residues than M has states.
- Consequence: A language with infinitely many residues cannot be recognized by any automaton!

### Showing that a language fails recognition

- We saw that  $L=\{w\in\{0,1\}^*\mid \#_0(w)=\#_1(w)\}$  has infinitely many residues.
- Consequence: It cannot be recognized by any automaton!!!
- General method: show that L is not recognized by showing that there are infinitely many residues.
- We do not need to consider all residues,
   only some infinite selection, defined by a template
- We do not need to calculate the residues we choose,
   only show that each two of them are different.
- We show them different by exhibiting a string which is in one but not in the other.

### Example: Unary addition

 Representing unary addition, using unary numerals and the symbols for addition and equality:

• 
$$L = \{1^k + 1^m = 1^{k+m} \mid k, m \geqslant 1\}$$

• What residues would you select?

- $L/1^n+1=$  for each  $n\geqslant 1$ .
- Suppose  $i \neq j$ . What string is in  $L/\mathbf{1}^i + \mathbf{1} =$  but not in  $L/\mathbf{1}^j + \mathbf{1} =$  ?

• Consider  $L = \{u \cdot u \mid u \in \{0,1\}^*\}$ . What residues L/w to take?

- Consider  $L = \{u \cdot u \mid u \in \{0,1\}^*\}$ . What residues L/w to take?
- w with an end-mark would help with differentiating residues. Say  $0^n1$ ?

- Consider  $L = \{u \cdot u \mid u \in \{0,1\}^*\}$ . What residues L/w to take?
- w with an end-mark would help with differentiating residues.
   Say 0<sup>n</sup>1?
- Then  $0^i 1 \in L/0^i 1$ , but for j > i we have  $0^i 1 \not\in L/0^j 1$ , because it has two 1's in its first half and none in the second.

- Consider  $L = \{u \cdot u \mid u \in \{0,1\}^*\}$ . What residues L/w to take?
- w with an end-mark would help with differentiating residues. Say  $0^n1$ ?
- Then  $0^i 1 \in L/0^i 1$ , but for j > i we have  $0^i 1 \not\in L/0^j 1$ , because it has two 1's in its first half and none in the second.
- Since each two of these residues are different,
   L has infinitely many residues,
   and cannot be recognized by a DFA.

### Example: Residues for perfect squares

- $\cdot L = \{ \mathbf{1}^{n^2} \mid n \geqslant 0 \}.$
- Consider the residues  $L/1^{n^2}$  for each n > 0.
- The first perfect square following  $n^2$  is  $(n+1)^2 = n^2 + 2n + 1$ .
- So the shortest non-null string of  $L/1^{i^2}$  is  $1^{2i+1}$ .
- It follows that  $\mathbf{1}^{2i+1} \in L/\mathbf{1}^{i^2}$  but  $\mathbf{1}^{2i+1} \not\in L/\mathbf{1}^{j^2}$  for any j>i.
- Since every two of these residues are different,
   has infinitely many residues,
   and cannot be recognized by any automaton.

F23

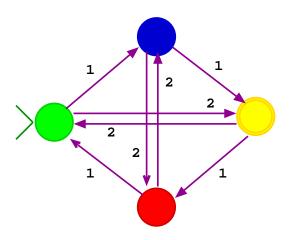
### Building automata directly from residues

- We showed that every recognized language has finitely many residues.
- The converse is also true:
- If  $L \subseteq \Sigma^*$  has finitely many residues, then  $L = \mathcal{L}(M)$  where:
  - $\star$  The states of M are the residues.
  - $\star$  The initial state is  $L/\varepsilon = L$ .
  - $\star$  A state L/w is accepting iff it contains  $\varepsilon$ .
  - $\star$  The transitions are given by  $L/w \stackrel{\sigma}{ o} L/w\sigma$  .
- We used the same idea to construct automata, except that here we assume that the residues are given to us.
- We write Res(L) for the automaton constructed from residues.

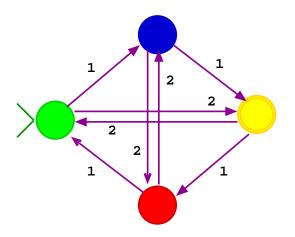
### Recognized = finitely many residues

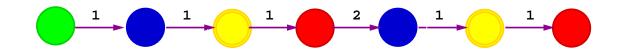
- ullet A language  $oldsymbol{L}$  is recognized iff it has finitely many residues.
- ullet The DFA constructed from L's residues has the fewer states
- Given a DFA M recognizing L, and a state q,

# **AUTOMATA ARE REPETITIVE**



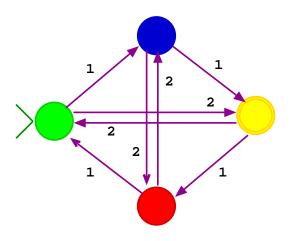
• Here's an automaton that accepts a string  $w \in \{1, 2\}^*$  iff the sum of the digits in w is  $2 \mod (4)$ .

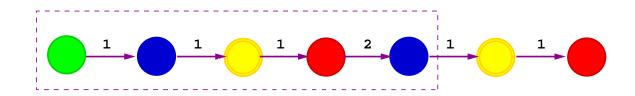




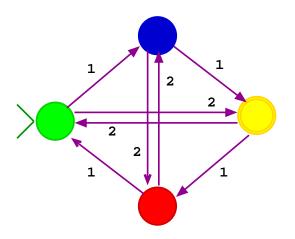
• This is its trace for input 111212.

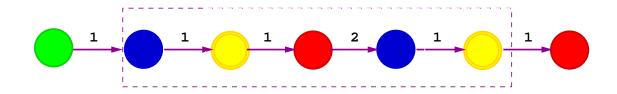
The input has 6 symbols, so the trace lists 7 states.



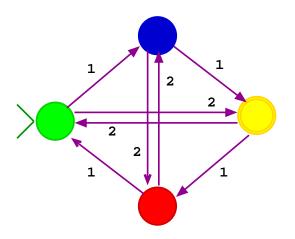


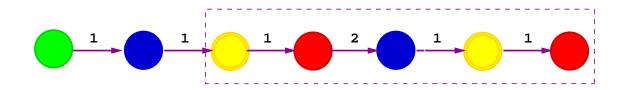
• Looking at the first 5 of the 7, we must have a state repeating, because there are only 4 states.





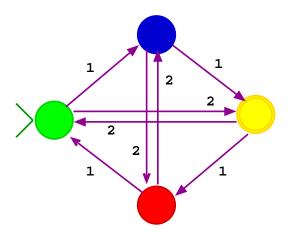
The same happens for the next stretch of 5 states (i.e. 4 input symbols)

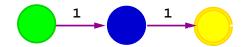


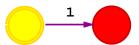


And the next one.

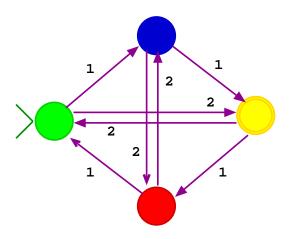
No matter which window of 5 states we take there will be a state repeating!

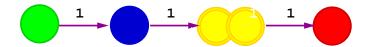






We can short-cut the steps from the yellow state to itself, and the result will still be a legit trace, but for 112.





We can short-cut the steps from the yellow state to itself, and the result will still be a legit trace, but for 112.

#### The Shortcut Theorem

• Theorem. Let M be a k-state DFA.

If  $q \stackrel{u}{\to} p$  and  $|u| \geqslant k$  then  $q \stackrel{u'}{\to} p$  where u' is u with some substring  $y \neq \varepsilon$  clipped off, i.e. removed.

#### The Shortcut Theorem

- Theorem. Let M be a k-state DFA.

  If  $q \stackrel{u}{\to} p$  and  $|u| \geqslant k$  then  $q \stackrel{u'}{\to} p$  where u' is u with some substring  $y \neq \varepsilon$  clipped off, i.e. removed.
- Suppose we have  $s \stackrel{w_0}{\to} p \stackrel{u}{\to} q \stackrel{w_1}{\to} A$  with  $|u| \geqslant k$  .

#### The Shortcut Theorem

- Theorem. Let M be a k-state DFA.

  If  $q \stackrel{u}{\to} p$  and  $|u| \geqslant k$  then  $q \stackrel{u'}{\to} p$  where u' is u with some substring  $y \neq \varepsilon$  clipped off, i.e. removed.

## The Clipping Theorem

• Theorem. If a k -state DFA accepts a string w, and u is a substring of w of length  $\geqslant k$ , then u has a substring  $y \neq \varepsilon$  such that w with y removed is also accepted.

### The Clipping Theorem

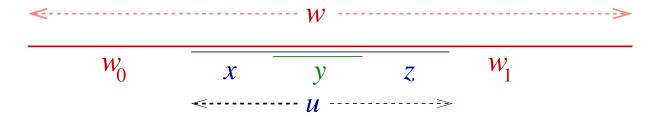
- Theorem. If a k-state DFA accepts a string w, and u is a substring of w of length  $\geqslant k$ , then u has a substring  $y \neq \varepsilon$  such that w with y removed is also accepted.
- That is, if M accepts  $w_0 \cdot u \cdot w_1$ , where  $|u| \geqslant k$ , then there is a split  $u = x \cdot y \cdot z$ , with  $y \neq \varepsilon$ , such that  $w' = w_0 \cdot x \cdot z \cdot w_1$  is also accepted.

### The Clipping Theorem

- Theorem. If a k-state DFA accepts a string w, and u is a substring of w of length  $\geqslant k$ , then u has a substring  $y \neq \varepsilon$  such that w with y removed is also accepted.
- That is, if M accepts  $w_0 \cdot u \cdot w_1$ , where  $|u| \geqslant k$ , then there is a split  $u = x \cdot y \cdot z$ , with  $y \neq \varepsilon$ , such that  $w' = w_0 \cdot x \cdot z \cdot w_1$  is also accepted.
- We call  $\boldsymbol{u}$  the *critical* substring, the occurrence of  $\boldsymbol{y}$  the *clipped* substring, and  $\boldsymbol{w'}$  the *reduced* string.

#### The Clipping Theorem

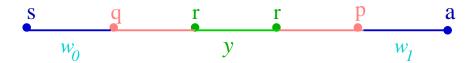
- Theorem. If a k -state DFA accepts a string w, and u is a substring of w of length  $\geqslant k$ , then u has a substring  $y \neq \varepsilon$  such that w with y removed is also accepted.
- We call  $\boldsymbol{u}$  the **critical** substring, the occurrence of  $\boldsymbol{y}$  the **clipped** substring, and  $\boldsymbol{w'}$  the **reduced** string.

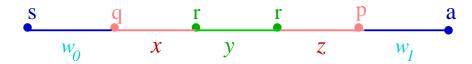


 $\frac{s}{w}$ 

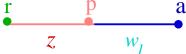


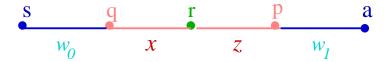












#### An application: the shortest string accepted

• If M is a 10 state automaton that accepts some string. What is the length  $\ell$  of the **shortest** string accepted?

```
1. \ell \in [30..100]
```

2. 
$$\ell \in [10..25]$$

3. 
$$\ell \in [0..9]$$

4. Can't tell, could be anything.

#### An application: the shortest string accepted

- If M is a 10 state automaton that accepts some string. What is the length  $\ell$  of the **shortest** string accepted?
- Theorem. If a k-state automaton M accepts some string, then it accepts a string of length < k.

#### An application: the shortest string accepted

- If M is a 10 state automaton that accepts some string. What is the length  $\ell$  of the **shortest** string accepted?
- Theorem. If a k-state automaton M accepts some string, then it accepts a string of length < k.
- Proof: Let w be a shortest string accepted by M. If  $|w| \ge k$  then we invoke the Clipping Theorem, with w itself for u, and obtain a  $w' \in L$  shorter than w. This contradicts the assumed minimality of |w|.

### On not being an insect

 How do you tell that the critter on your desk is not an insect?

#### On not being an insect

- How do you tell that the critter on your desk is not an insect?
- Check that it violates some property of insects,
   e.g. it has eight rather than six legs.
- How do you tell that a given language L
  is not recognized by any automaton?
- Refer to a property that all recognized languages have, but *L* does not.

#### On not being an insect

- How do you tell that the critter on your desk is not an insect?
- Check that it violates some property of insects,
   e.g. it has eight rather than six legs.
- How do you tell that a given language L
  is not recognized by any automaton?
- Refer to a property that all recognized languages have, but *L* does not.

### The Clipping Property

• The Clipping Theorem:

Every recogized *L* has this Clipping Property:

#### The Clipping Property

• The Clipping Theorem:

Every recogized *L* has this Clipping Property:

- ▶ There is a k (# of states of an acceptor for L),
- lacktriangledown so that for every  $w\in L$  and substring u of length  $\geqslant k$ ,
- ▶ u has a "clippable" substring  $y \neq \varepsilon$ : removing y from w yields a string in L.

#### The Clipping Property

• The Clipping Theorem:

Every recogized *L* has this Clipping Property:

- ▶ There is a k (# of states of an acceptor for L),
- lacktriangle so that for every  $w\in L$  and substring u of length  $\geqslant k$ ,
- u has a "clippable" substring  $y \neq \varepsilon$ : removing y from w yields a string in L.
- A language fails Clipping when
  - ▶ for any k > 0
  - lacktriangledown we can choose  $w\in L$  and substring u of length  $\geqslant k$ ,
  - ▶ so that *any* clipping off u yields  $w' \notin L$ .

#### Example: an-bn

- Let  $L = \{a^nb^n \mid n \geqslant 0\}$
- *L* fails clipping:
  - 1. Let k > 0
  - 2. Choose  $w = a^k b^k$  and  $u = a^k$ . We have  $w \in L$  and  $|u| \geqslant k$ .
  - 3. Any clipping in u yields from w a w' of the form  $a^pb^k$  with p < k. So  $w' \not\in L$ .
- Consequence: L fails the Clipping Property and cannot be recognized.

#### Example: Unary addition

Consider the strings representing addition in unary:

$$A = \{1^p + 1^q = 1^{p+q} \mid p, q > 0\}.$$

- A fails the Clipping Property:
  - 1. Let k > 0.
  - 2. Choose  $w = 1^k + 1 = 1^{k+1}$  and u the substring  $1^{k+1}$ .  $w \in A$  and  $|u| \geqslant k$ .
  - 3. Any clipping in u yields from w a string  $w' = \mathbf{1}^{\ell} + \mathbf{1} = \mathbf{1}^{k+1}$  with  $\ell < k$ .  $w' \not\in A$ .
- A fails Clipping, and so cannot be recognized.

#### Example: Perfect squares in unary

- Consider  $L = \{\mathbf{1}^{n^2} \mid n \geqslant 0\}.$
- *L* fails the Clipping Property:
  - 1. Let k > 0.
  - 2. Choose  $w = \mathbf{1}^{k^2}$  and  $u = \mathbf{1}^k$ .  $w \in L$  and  $|u| \geqslant k$ .
  - 3. For any clipped y we have  $1\leqslant |y|\leqslant |u|=k$ , so for the reduced string  $w'=1^\ell$  where  $k^2-k\leqslant \ell < k^2$ .  $w'\not\in L$  because  $\ell$  cannot be a square: the largest square preceding  $k^2$  is  $(k-1)^2=k^2-2k+1$  which is  $< k^2-k\leqslant \ell$ .
- ullet So L fails Clipping, and cannot be recognized.

- Consider  $L = \{x \cdot x \mid x \in \{0,1\}^*\}$
- Idea: Take  $w = x \cdot x$  with x that starts with a marker.

- Consider  $L = \{x \cdot x \mid x \in \{0, 1\}^*\}$
- Idea: Take  $w = x \cdot x$  with x that starts with a marker.
  - 1. Let k > 0.
  - 2. Choose  $w = 01^k01^k$  and u = left substring  $1^k$  in w.  $w \in L$  and  $|u| \geqslant k$ .

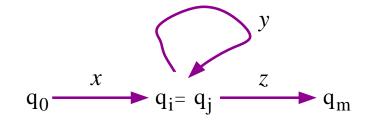
- Consider  $L = \{x \cdot x \mid x \in \{0, 1\}^*\}$
- Idea: Take  $w = x \cdot x$  with x that starts with a marker.
  - 1. Let k > 0.
  - 2. Choose  $w = 01^k01^k$  and u = left substring  $1^k$  in w.  $w \in L$  and  $|u| \geqslant k$ .
  - 3. Any clipped y in u yields from w a reduced string  $w' = 01^{\ell}01^{k}$  where  $\ell < k$ .
    - Such w' cannot be of the form xx, because its first half starts with 0 while its second half starts with 1.

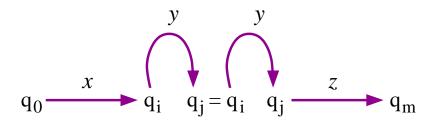
- Consider  $L = \{x \cdot x \mid x \in \{0, 1\}^*\}$
- Idea: Take  $w = x \cdot x$  with x that starts with a marker.
  - 1. Let k > 0.
  - 2. Choose  $w = 01^k01^k$  and u = left substring  $1^k$  in w.  $w \in L$  and  $|u| \geqslant k$ .
  - 3. Any clipped y in u yields from w a reduced string  $w' = 01^{\ell}01^{k}$  where  $\ell < k$ .

    Such w' cannot be of the form xx, because its first half starts with 0 while its second half starts with 1.
- *L* fails the Clipping Property, and cannot be recognized.

F23

#### Pumping up rather than clipping



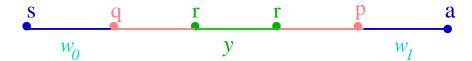


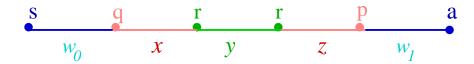


 $\frac{s}{w}$ 

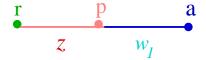


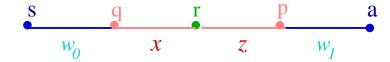


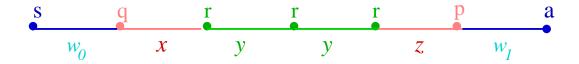


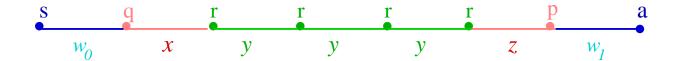














F23

#### Pumping instances

- Let  $w \in \Sigma^*$  and y a particular substring of w :  $w = x \cdot y \cdot z$ .
- The n-th pumping instance of  $w = x \cdot y \cdot z$  over (the exhibited occurrence of) y is defined to be  $x \cdot y^n \cdot z$ .

F23

#### The Pumping Theorem

- Let M be a k-state DFA over  $\Sigma$ ,  $L = \mathcal{L}(M)$ .
- As for Clipping, choose  $w \in L$  and a substring u of w of length  $\geq k$ .
- CONCLUDE:  $\boldsymbol{u}$  has a non-empty substring  $\boldsymbol{y}$  such that all pumping instances of  $\boldsymbol{w}$  over  $\boldsymbol{y}$  are in  $\boldsymbol{L}$ .
- Recall: The n-th pumping instance of w over (a particular occurrence of) y is the result of replacing y by  $y^n$ .

F23

# Failing Pumping

#### A language *fails Pumping* when:

- 1. For any k > 0
- 2. there are  $w \in L$  and substring u of w of length  $\geqslant k$
- 3. so that for **every** y within u there is a pumping instance w over y which is not in L.

F23

- $L = \{1^p \mid p \text{ is prime }\}$
- Suppose L is recognized by a k-state DFA M.

- $L = \{1^p \mid p \text{ is prime }\}$
- Suppose L is recognized by a k-state DFA M.
- Take a prime p > k and  $w = 1^p \in L$ .
- There is a pumping segment y in w of length  $\ell \neq 0$ .

- $L = \{1^p \mid p \text{ is prime }\}$
- Suppose L is recognized by a k-state DFA M.
- Take a prime p > k and  $w = 1^p \in L$ .
- There is a pumping segment y in w of length  $\ell \neq 0$ .
- The (p+1)-st pumping instance of w over y has length  $|w|-\ell+(p+1)\ell=p+p\ell=p(\ell+1)$ , which is not prime.

- $L = \{1^p \mid p \text{ is prime }\}$
- Suppose L is recognized by a k-state DFA M.
- Take a prime p > k and  $w = 1^p \in L$ .
- There is a pumping segment y in w of length  $\ell \neq 0$ .
- The (p+1)-st pumping instance of w over y has length  $|w|-\ell+(p+1)\ell=p+p\ell=p(\ell+1)$ , which is not prime.

Contradiction. M cannot exist.

F23 110

• Show that the language

$$L = \{ w \cdot \mathbf{a}^n \mid w \in \{ \mathbf{a}, \mathbf{b} \}^*, \; \#_a(w) = n \; \}$$
 is not recognized.

• Show that the language

$$L = \{ w \cdot \mathbf{a}^n \mid w \in \{ \mathbf{a}, \mathbf{b} \}^*, \; \#_a(w) = n \; \}$$
 is not recognized.

• Suppose L were recognized by a k-state DFA. Let  $w = b^k a^k$ , which is in L, and take  $u = b^k$ , the prefix of w.

Show that the language

$$L = \{ w \cdot \mathtt{a}^n \mid w \in \{\mathtt{a},\mathtt{b}\}^*, \; \#_a(w) = n \; \}$$
 is not recognized.

- Suppose L were recognized by a k-state DFA. Let  $w = b^k a^k$ , which is in L, and take  $u = b^k$ , the prefix of w.
- By the Pumping Theorem u has a substring  $y=\mathbf{b}^\ell$  where  $\ell>0$  such that  $\mathbf{b}^{k+n\ell}\,\mathbf{a}^k\in L$  for all  $n\geqslant 0$ . In particular, for n=1 we have  $w'=\mathbf{b}^{k+\ell}\,\mathbf{a}^k\in L$ .

Show that the language

$$L = \{ w \cdot \mathtt{a}^n \mid w \in \{\mathtt{a},\mathtt{b}\}^*, \; \#_a(w) = n \; \}$$
 is not recognized.

- Suppose L were recognized by a k-state DFA. Let  $w = b^k a^k$ , which is in L, and take  $u = b^k$ , the prefix of w.
- By the Pumping Theorem u has a substring  $y=b^\ell$  where  $\ell>0$  such that  $b^{k+n\ell}a^k\in L$  for all  $n\geqslant 0$ . In particular, for n=1 we have  $w'=b^{k+\ell}a^k\in L$ .

But this is impossible, because the second half of this w' has b's, so  $w' \not\in L$ .

ullet Thus no DFA recgnizes  $oldsymbol{L}$  .

F23 111

# Minimum states for finite language recognition

- Any *finite* language *L* is recognized by an automaton!
- But how many states are needed?

# Minimum states for finite language recognition

- Any *finite* language L is recognized by an automaton!
- But how many states are needed?
- At least as many as the longest string-length in L.

## Minimum states for finite language recognition

- Any *finite* language L is recognized by an automaton!
- But how many states are needed?
- At least as many as the longest string-length in L.
- Proof: If M with k states recognizes a string longer than k, then Pumping applies, and L is infinite!

F23

# **MODIFYING & COMBINING AUTOMATA**

F23

• A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).

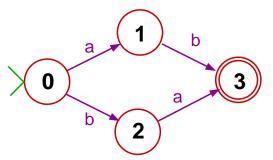
- A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).
- ullet A partial-automaton M terminates execution when it cannot proceed: no applicable transition (due to partiality) or no next-letter to move to.

It **accepts** w if its state-trace for w ends with an accepting state.

- A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).
- ullet A partial-automaton M terminates execution when it cannot proceed: no applicable transition (due to partiality) or no next-letter to move to.

It **accepts** w if its state-trace for w ends with an accepting state.

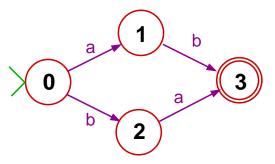
Example: A partial automaton recognizing {ab, ba}:



- A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).
- ullet A partial-automaton M terminates execution when it cannot proceed: no applicable transition (due to partiality) or no next-letter to move to.

It *accepts* w if its state-trace for w ends with an accepting state.

• Example: A partial automaton recognizing {ab, ba}:



 Some people use "automaton" for our "partial-automaton" and "total-automaton" for our "automaton."

# From partial- to total-automaton

• Theorem. Every partial-automaton M can be converted into a total-automaton  $\bar{M}$  equivalent to M, i.e. recognizing the same language.

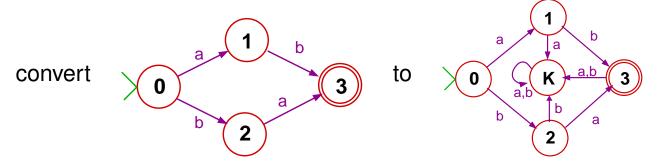
Do you seee how?

# From partial- to total-automaton

• Theorem. Every partial-automaton M can be converted into a total-automaton  $\bar{M}$  equivalent to M, i.e. recognizing the same language.

Do you seee how?

• Just add a sink to M:

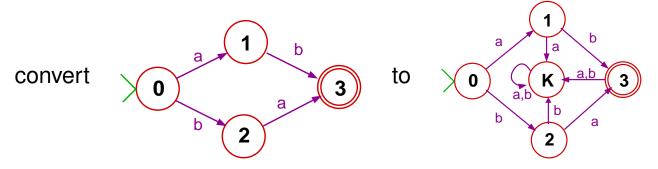


## From partial- to total-automaton

• Theorem. Every partial-automaton M can be converted into a total-automaton  $\bar{M}$  equivalent to M, i.e. recognizing the same language.

Do you seee how?

• Just add a sink to M:



• That is,  $\bar{M}$  is obtained by adding to M a sink state K, with all missing transitions of M as well as outgoing transition from K, pointing to K.

# Application: Additional languages recognized

- Suppose M recognizes  $\{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w) \mod 2\}$ .
- ullet Then swapping states in M yields an automaton recognizing

$$\{w \in \{a,b\}^* \mid \#_a(w) \neq \#_b(w) \mod 2\}$$

F23 116

# Application: Showing a language not-recognized

• Show  $L=\{w\in\{a,b\}^*\mid \#_a(w)\neq \#_b(w)\}$  is not recognized. ow observe that  $L'=\bar{L}\cap\{a\}^*\cdot\{b\}^*$ .

# Application: Showing a language not-recognized

- Show  $L=\{w\in\{\mathtt{a},\mathtt{b}\}^*\mid \#_a(w)\neq \#_b(w)\}$  is not recognized.
- Clipping doesn't work! ow observe that  $L'=ar{L}\cap \{a\}^*\cdot \{b\}^*$  .

## Application: Showing a language not-recognized

- Show  $L = \{w \in \{a,b\}^* \mid \#_a(w) \neq \#_b(w)\}$  is not recognized.
- Clipping doesn't work!
- Use Clipping to show that

$$L' = \{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w)\}$$

is not recognized.

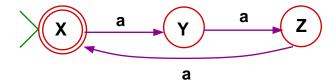
ow observe that  $L' = \bar{L} \cap \{a\}^* \cdot \{b\}^*$  .

F23 117

# Combining two automata

Let 
$$\Sigma = \{a, b\}$$
.

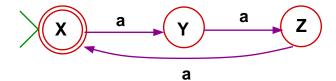
• Suppose  $M_3$  recognizes  $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3) \}$ 



## Combining two automata

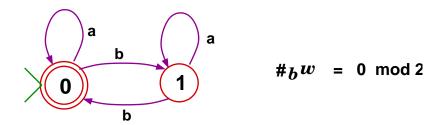
Let 
$$\Sigma = \{a, b\}$$
.

• Suppose  $M_3$  recognizes  $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3) \}$ 



and

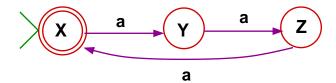
•  $M_2$  recognizes  $L_2 = \{w \in \Sigma^* \mid \#_b(w) = 0 \mod (2) \}$  .



## Combining two automata

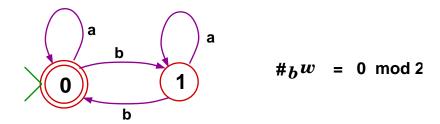
Let 
$$\Sigma = \{a, b\}$$
.

• Suppose  $M_3$  recognizes  $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3) \}$ 



and

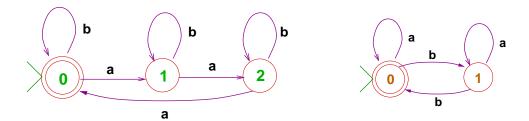
•  $M_2$  recognizes  $L_2 = \{w \in \Sigma^* \mid \#_b(w) = 0 \mod (2) \}$ .

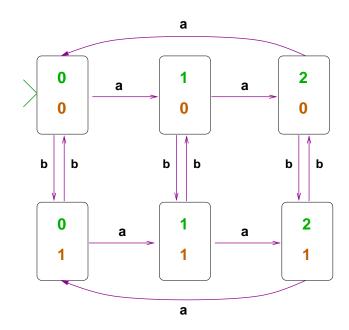


This is special parallelism:

the two processors may work in tandem, because they read the same input one symbol at a time.

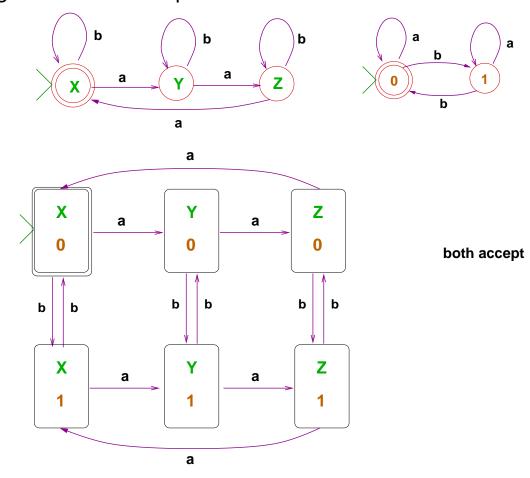
# Two automata collaborating





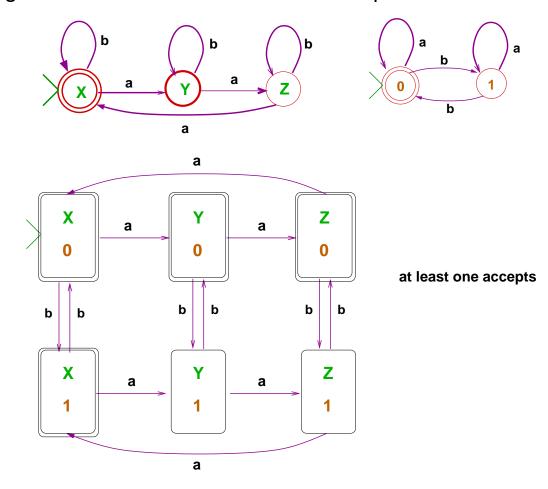
# Conjuctive pairing

• Accepting when both accept:



# Disjunctive pairing

Accepting when at least one automaton accepts:



• Given automata  $M=(\Sigma,Q,s,A,\delta)$  and  $M'=(\Sigma,Q',s',A',\delta')$  consider a  $\it coupling$ :

- Given automata  $M=(\Sigma,Q,s,A,\delta)$  and  $M'=(\Sigma,Q',s',A',\delta')$  consider a  $\it coupling$ :
  - ▶ States are pairs  $\langle q, q' \rangle$  where  $q \in Q$  and  $q' \in Q'$ . I.e. the set of states is  $Q \times Q'$ .
  - ▶ The initial state is  $\langle s, s' \rangle$ .

- Given automata  $M=(\Sigma,Q,s,A,\delta)$  and  $M'=(\Sigma,Q',s',A',\delta')$  consider a *coupling*:
  - ▶ States are pairs  $\langle q, q' \rangle$  where  $q \in Q$  and  $q' \in Q'$ . I.e. the set of states is  $Q \times Q'$ .
  - ▶ The initial state is  $\langle s, s' \rangle$ .
  - ► The transitions are  $\langle q, q' \rangle \stackrel{\sigma}{\to} \langle p, p' \rangle$  where  $q \stackrel{\sigma}{\to} p$  in M and  $q' \stackrel{\sigma}{\to} p'$  in M'.

- Given automata  $M=(\Sigma,Q,s,A,\delta)$  and  $M'=(\Sigma,Q',s',A',\delta')$  consider a *coupling*:
  - ▶ States are pairs  $\langle q, q' \rangle$  where  $q \in Q$  and  $q' \in Q'$ . I.e. the set of states is  $Q \times Q'$ .
  - ▶ The initial state is  $\langle s, s' \rangle$ .
  - ► The transitions are  $\langle q, q' \rangle \stackrel{\sigma}{\to} \langle p, p' \rangle$  where  $q \stackrel{\sigma}{\to} p$  in M and  $q' \stackrel{\sigma}{\to} p'$  in M'.
- In a **conjunctive product** the set of accepting states is  $A \times A'$  (both automata accept).

- Given automata  $M=(\Sigma,Q,s,A,\delta)$  and  $M'=(\Sigma,Q',s',A',\delta')$  consider a *coupling*:
  - ▶ States are pairs  $\langle q, q' \rangle$  where  $q \in Q$  and  $q' \in Q'$ . I.e. the set of states is  $Q \times Q'$ .
  - ▶ The initial state is  $\langle s, s' \rangle$ .
  - ► The transitions are  $\langle q, q' \rangle \stackrel{\sigma}{\rightarrow} \langle p, p' \rangle$  where  $q \stackrel{\sigma}{\rightarrow} p$  in M and  $q' \stackrel{\sigma}{\rightarrow} p'$  in M'.
- In a **conjunctive product** the set of accepting states is  $A \times A'$  (both automata accept).
- In a **disjunctive product** the set of accepting states is  $(A \times Q') \cup (Q \times A')$  ( $\geqslant 1$  accept).

F23 122

```
\bullet \ L = \{ \ \mathtt{a} \ w \mathtt{z} \ \mid \ w \in \Sigma^* \ \}
```

```
  \cdot L = \{ \text{ a } w \text{z } \mid w \in \Sigma^* \}    \cdot \{ \text{a}^p \text{b}^q \mid p \text{ is odd } \}.
```

- $\cdot L = \{ \text{ a } w \text{z } \mid w \in \Sigma^* \}$   $\cdot \{ \text{a}^p \text{b}^q \mid p \text{ is odd } \}.$
- An automaton over {a,b,c} recognizing the string that miss at least one letter.

and  $\{c, a\}^*$ ).

```
L = { a wz | w ∈ Σ* }
{a<sup>p</sup>b<sup>q</sup> | p is odd }.
An automaton over {a,b,c} recognizing the string that miss at least one letter. (The union of {a,b}*, {b,c}*
```

F23

# **BASIC AND REGULAR LANGUAGES**

• Fix  $\Sigma$ . The **basic**  $\Sigma$ -languages are generated by:

- Fix  $\Sigma$ . The **basic**  $\Sigma$ -languages are generated by:
  - ► All finite languages

- Fix  $\Sigma$ . The **basic**  $\Sigma$ -languages are generated by:
  - ► All finite languages
  - ▶ Obtained by set operations: If L, L' are basic then so are  $L \cup L'$ ,  $L \cap L'$ , and  $\bar{L} = \Sigma^* L$

- Fix  $\Sigma$ . The **basic**  $\Sigma$ -languages are generated by:
  - ► All finite languages
  - ▶ Obtained by set operations: If L, L' are basic then so are  $L \cup L'$ ,  $L \cap L'$ , and  $\bar{L} = \Sigma^* L$
  - ▶ Obtained by language operations: If L, L' are basic then so are  $L \cdot L'$  and  $L^*$ .

#### Regular languages

- The collection of **regular languages** is generated like the basic languages, but with more frugality.
- We shall see that every basic language is regular, but the frugality of regular languages allows an economy of efforts and notations.
- The generative rules for regular languages:
  - ▶ Basis:  $\emptyset$ ,  $\{\varepsilon\}$ , and  $\{\sigma\}$  for each  $\sigma \in \Sigma^*$ .
  - $\blacktriangleright$  Set operation: If L and L' are regular then so is  $L \cup L'$ .
  - ▶ Language operations: If L and L' are regular, then so are  $L \cdot L'$  and  $L^*$ .

#### Every regular language is basic

- Proof by induction on the definition fo regular language.
- The initial regular languages are all finite, so they are all initial basic languages.
- If regular languages L,L' are basic, then their union, concatenation and star are also basic, since the union and concatenation of basic languages are basic.

F23

#### Regular expressions

- Aren't we all bored and tired of writing all these braces?
- We can keep track of the generative process by simple road-maps, called regular expressions.
- Given  $\Sigma$ , the **regular expressions over**  $\Sigma$  are generated by:
  - ▶ The languages  $\emptyset$ ,  $\{\varepsilon\}$  and  $\{\sigma\}$  are named by  $\emptyset$ ,  $\varepsilon$ , and  $\sigma$ .
  - $\begin{tabular}{ll} & \textbf{If } L, L' \ \, \text{are named by } \alpha, \alpha' \ \, \text{then } L \cup L' \ \, \text{is named by } (\alpha) \cup(\alpha'), \\ & L \cdot L' \ \, \text{by } (\alpha) \end{tabular} (\alpha'), \ \, \text{and} \\ & L^* \ \, \text{by } (\alpha)^* \end{tabular}$

## Decoding reg exp

- Formally, the function from regular expressions to regular languages is defined by recurrence on the definition of reg exps.
- Base.  $\mathcal{L}(\emptyset) = \emptyset$   $\mathcal{L}(\boldsymbol{\varepsilon}) = \{\varepsilon\}$   $\mathcal{L}(\boldsymbol{\sigma}) = \{\sigma\} \ (\sigma \in \Sigma)$
- Recurrence cases:

$$\mathcal{L}(\alpha \cup \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$$

$$\mathcal{L}(\alpha \bullet \beta) = \mathcal{L}(\alpha) \cdot \mathcal{L}(\beta)$$

$$\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$$

# THE GRAND REGULAR UNITY

# What makes automata and regularity so central

- We have three imporance language properties.
  - Basic
  - Recognized
  - Regular
- Each is consequential, and their equivalence demonstrates unity and coherence

## Uniting three definitions

- We'll see that the following properties of languages are equivalent.
  - ► L is basic
  - ► *L* is recognized by an automaton
  - ► *L* is regular
  - ▶ L has finitely many residues
- The proofs are much easier using a broader notion of an automaton, called *nondeterministic automaton* (NFAs).
- To avoid ambiguity, we'll refer to automata as deterministic automata (DFAs).
- Of course, we'll need to show that a language is recognized by an NFA iff it is recognized by a DFA.

# NONDETERMINISTIC AUTOMATA

# The concatenation of recognized languages

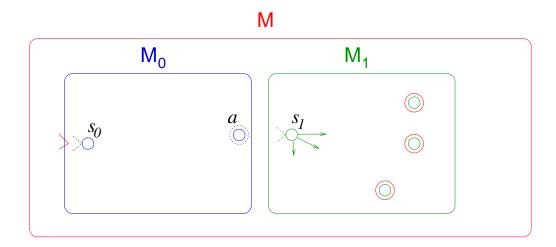
• We proved: If L, L' are recognized then so are  $L \cup L'$ ,  $L \cap L'$  and L - L'.

#### The concatenation of recognized languages

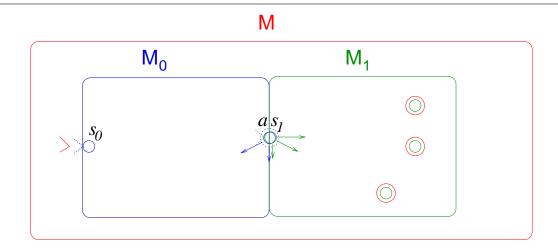
- We proved: If L,L' are recognized then so are  $L\cup L'$ ,  $L\cap L'$  and L-L'.
- Concatenation? Given automata M and M' recognizing L and L' construct automaton K recognizing  $L \cdot L'$ .

#### The concatenation of recognized languages

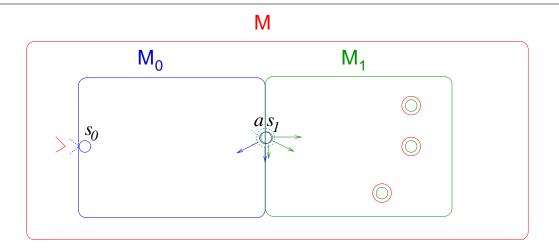
- We proved: If L, L' are recognized then so are  $L \cup L'$ ,  $L \cap L'$  and L L'.
- Concatenation? Given automata M and M' recognizing L and L' construct automaton K recognizing  $L \cdot L'$ .



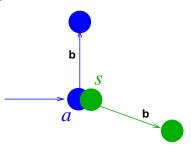
# Trying to make this work



# Trying to make this work



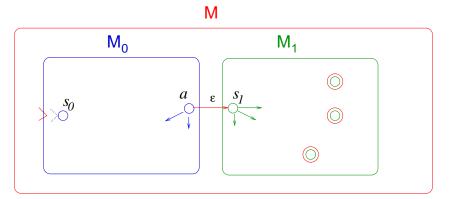
• Problem: Can't coalesce a and  $\sigma_1$ : They might have conflicting transitions rules:



And computation might proceed back and forth between  $\,M_0\,$  and  $\,M_1\,$ .

## Spontaneous transitions

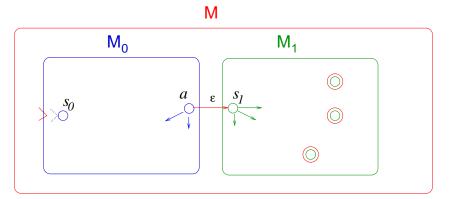
• We can force the computation to proceed from  $M_0$  to  $M_1$  by allowing spontaneous transitions between states,  $q \rightarrow p$  without any symbol read.



• We call these **epsilon-transitions**, in analogy to the notation  $q \stackrel{w}{\rightarrow} p$ .

## Spontaneous transitions

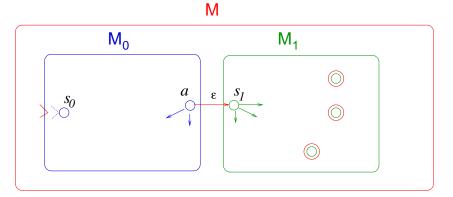
• We can force the computation to proceed from  $M_0$  to  $M_1$  by allowing spontaneous transitions between states,  $q \rightarrow p$  without any symbol read.



• We call these **epsilon-transitions**, in analogy to the notation  $q \stackrel{w}{\rightarrow} p$ .

## Spontaneous transitions

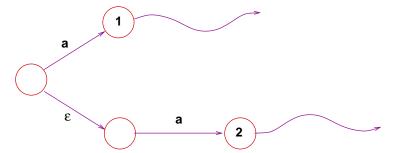
• We can force the computation to proceed from  $M_0$  to  $M_1$  by allowing spontaneous transitions between states,  $q \rightarrow p$  without any symbol read.



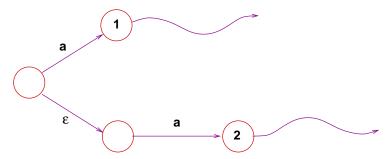
• We call these **epsilon-transitions**, in analogy to the notation  $q \stackrel{w}{\rightarrow} p$ .

F23

•  $\varepsilon$ -transitions yield "ambiguous" computation:

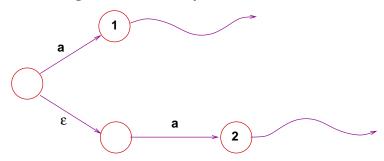


• *€*-transitions yield "ambiguous" computation:



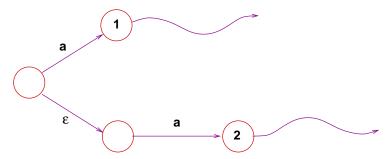
• So we might as well allow non-univalent (AKA *nondeterministic*) transition rules.

• *€*-transitions yield "ambiguous" computation:



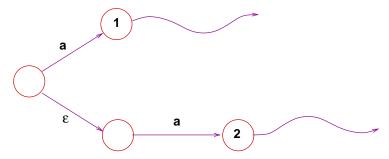
- So we might as well allow non-univalent (AKA *nondeterministic*) transition rules.
- This does not correspond to normal hardware behavior, but:
  - ► The notion is important elsewhere

• *€*-transitions yield "ambiguous" computation:



- So we might as well allow non-univalent (AKA *nondeterministic*) transition rules.
- This does not correspond to normal hardware behavior, but:
  - ► The notion is important elsewhere
  - ▶ It can be simulated by *\varepsilon*-transitions, which do model natural phenomena; and

• *€*-transitions yield "ambiguous" computation:

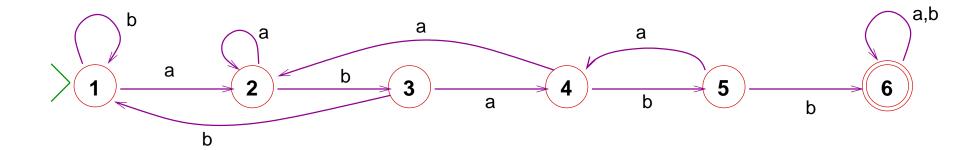


- So we might as well allow non-univalent (AKA *nondeterministic*) transition rules.
- This does not correspond to normal hardware behavior, but:
  - ► The notion is important elsewhere
  - ▶ It can be simulated by *\varepsilon*-transitions, which do model natural phenomena; and
  - ► It is algorithmically natural, as we see next.

# **AUTOMATA AS ON-LINE ALGORITHMS**

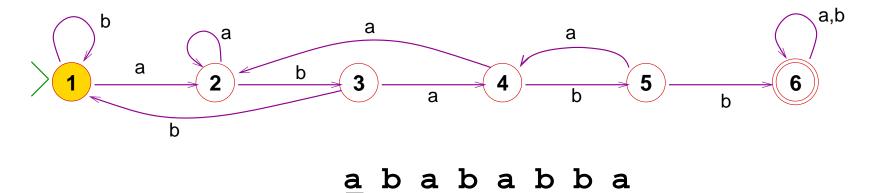
# Automata as on-line algorithms

- Automata can be viewed as efficient real time algorithms, which move pointers (or "tokens") around.
- An automaton to recognize the presence of ababb:



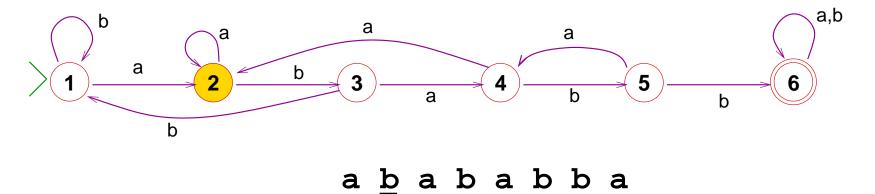
# The operation visualized

• The automaton's operation can be visualized by moving a token designating the current state.



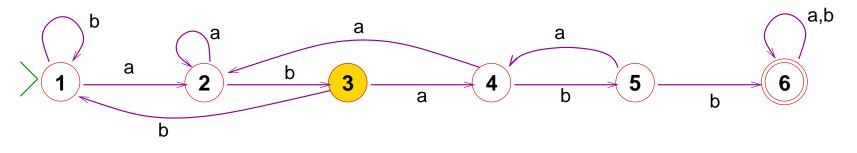
# The operation visualized

• The automaton's operation can be visualized by moving a token designating the current state.



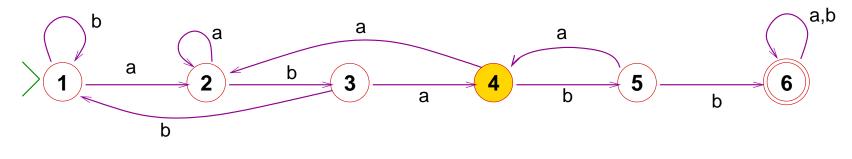
# The operation visualized

• The automaton's operation can be visualized by moving a token designating the current state.



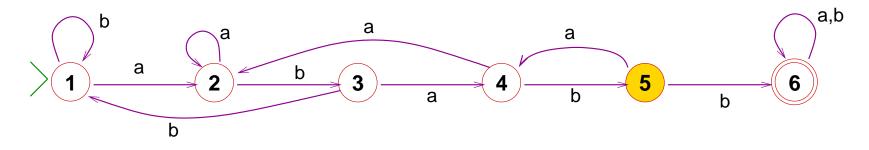
a b <u>a</u> b a b b a

• The automaton's operation can be visualized by moving a token designating the current state.



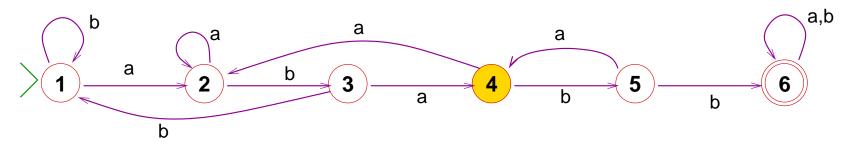
a b a <u>b</u> a b b a

• The automaton's operation can be visualized by moving a token designating the current state.



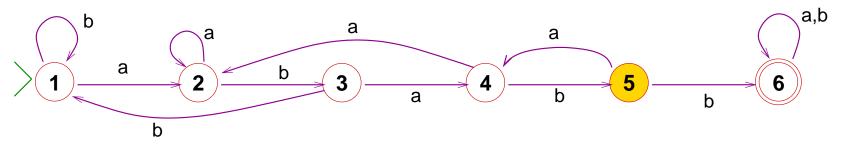
a b a b <u>a</u> b b a

• The automaton's operation can be visualized by moving a token designating the current state.



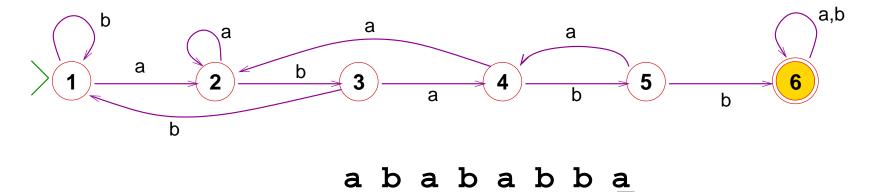
 $ababa\underline{b}ba$ 

• The automaton's operation can be visualized by moving a token designating the current state.

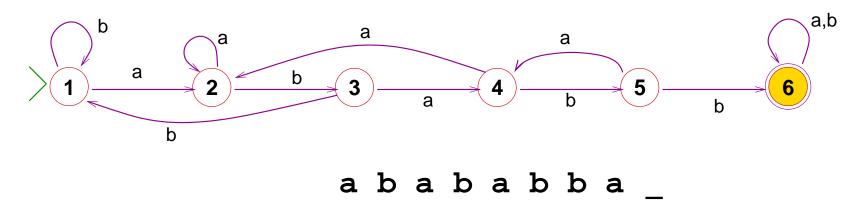


a b a b a b <u>b</u> a

• The automaton's operation can be visualized by moving a token designating the current state.

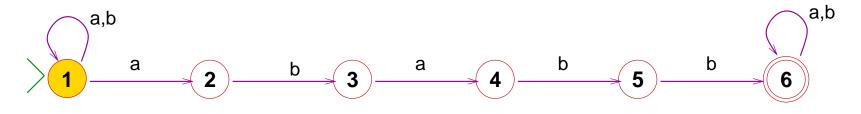


• The automaton's operation can be visualized by moving a token designating the current state.



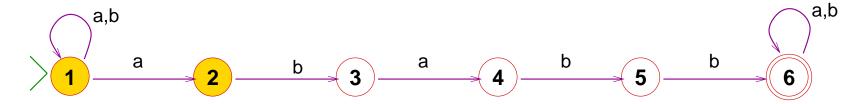
F23 141

• Here we have ambiguities at the start and end of the chain.



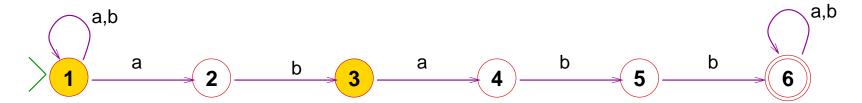
<u>a</u> b a b a b b a

• There are options for the "current state".



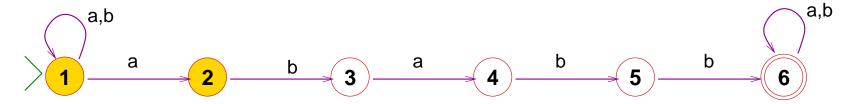
abababa

• There are options for the "current state".



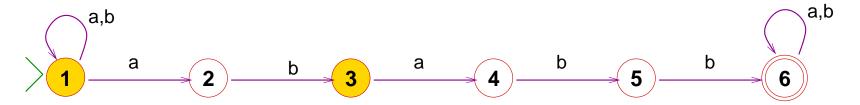
a b <u>a</u> b a b b a

• There are options for the "current state".



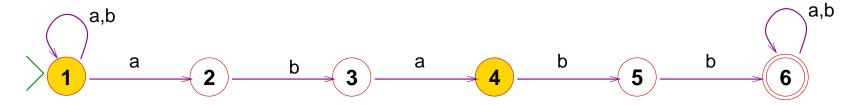
a b a b a b b a

• There are options for the "current state".



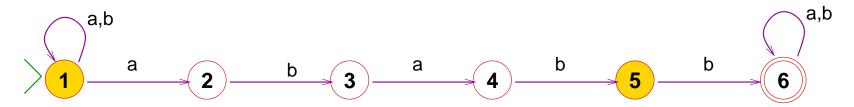
a b a b a b b a

• There are options for the "current state".



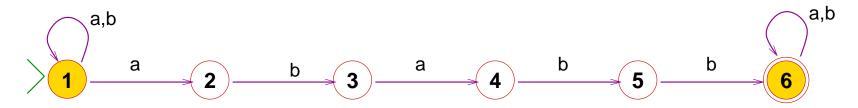
abababba

• There are options for the "current state".



a b a b a b <u>b</u> a

• There are options for the "current state".



a b a b a b b a

F23

#### Non-deterministic automata

A non-deterministic automaton over  $\Sigma$ :

- Finite (non-empty) set Q of states
- Start state s and accepting states  $A \subseteq Q$
- Transition mapping:  $\delta: (Q \times \Sigma_{\epsilon}) \Rightarrow Q$
- Here  $\Sigma_{\epsilon} = \Sigma \cup \{\varepsilon\}$
- Still using the notation  $q \stackrel{\sigma}{\to} p$  for  $\langle q, \sigma, p \rangle \in \delta$
- But  $q \stackrel{\epsilon}{\to} p$  is also an option.

F23

#### Computation state-traces

• If 
$$w = \sigma_1 \cdot \sigma_2 \cdot \dots \cdot \sigma_n$$
 where  $\sigma_i \in \Sigma_{\varepsilon}$ , and  $q \xrightarrow{\sigma_1} r_1 \xrightarrow{\sigma_2} r_2 \cdot \dots \cdot r_{n-1} \xrightarrow{\sigma_n} p$  then  $q \Longrightarrow p$ .

#### Computation state-traces

- If  $w = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_n$  where  $\sigma_i \in \Sigma_{\epsilon}$ , and  $q \xrightarrow{\sigma_1} r_1 \xrightarrow{\sigma_2} r_2 \cdot \cdots \cdot r_{n-1} \xrightarrow{\sigma_n} p$  then  $q \Longrightarrow p$ .
- The sequence of states

$$q r_1 r_2 \cdots r_{n-1} p$$

as above is a **state-trace** of the NFA for input w.

F23 144

#### Generative definition of $q \stackrel{w}{\Longrightarrow} p$

- Base.  $q \xrightarrow{\epsilon} q$  for all  $q \in Q$ .
- Step. If  $q \xrightarrow{\sigma} p$  by the NFA's transition, and  $p \xrightarrow{w} r$  has been generated already (where  $\sigma \in \Sigma_{\epsilon}$ ) then  $q \xrightarrow{\sigma \cdot w} r$ .

F23 145

## Acceptance by an NFA

• M accepts a string  $w \in \Sigma^*$  if  $s \xrightarrow{w} A$ .

#### Acceptance by an NFA

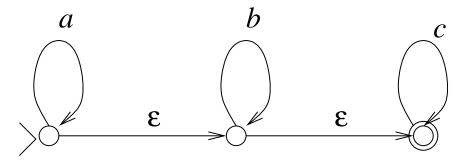
- M accepts a string  $w \in \Sigma^*$  if  $s \xrightarrow{w} A$ .
- This dfn is like for DFAs, but now
  - 1. A string w is accepted if there is **some** state-trace for  $s \xrightarrow{w} A$ .
  - 2. A "lucky trace" may include  $\varepsilon$ -transitions.

#### Acceptance by an NFA

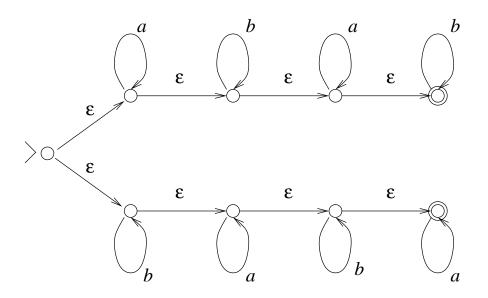
- M accepts a string  $w \in \Sigma^*$  if  $s \xrightarrow{w} A$ .
- This dfn is like for DFAs, but now
  - 1. A string w is accepted if there is **some** state-trace for  $s \xrightarrow{w} A$ .
  - 2. A "lucky trace" may include  $\varepsilon$ -transitions.
- The  $\begin{tabular}{ll} \textit{Ianguage recognized} \end{tabular}$  by M is the set of accepted strings.

F23 146

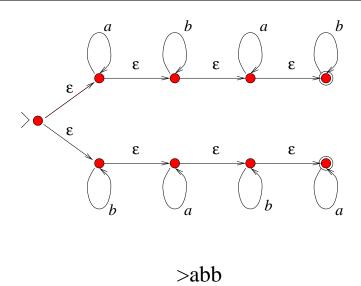
## **Example:** $\mathcal{L}(a^*b^*c^*)$

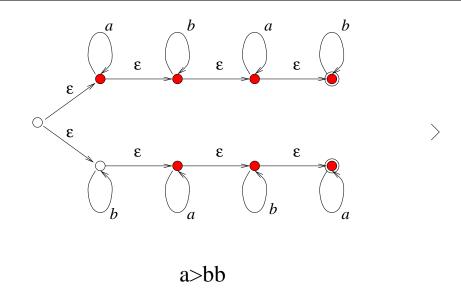


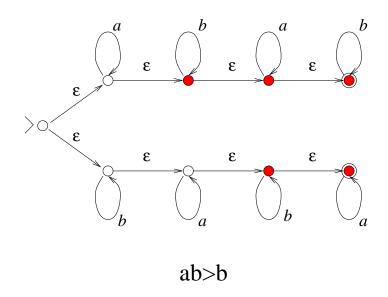
F23 147

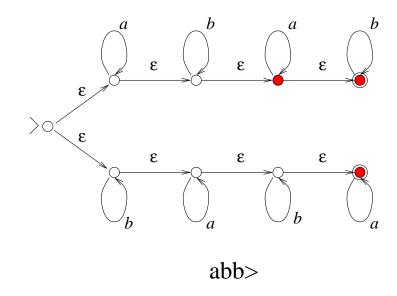


 $a^*b^*a^*b^*$   $Ub^*a^*b^*a^*$ 









So the number of states is *reduced* with each step.

F23 148

#### DFAs are special NFAs

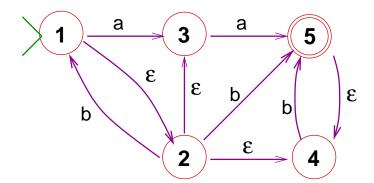
- NFAs *allow* non-univalence, they don't require it!
- So Every DFA is a special NFA, where the transition mapping happens to be univalent

F23 149

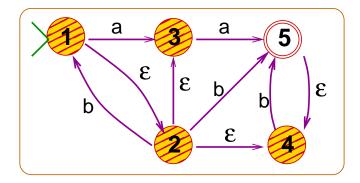
# **Converting NFAs to equivalent DFAs**

#### An NFA-to-DFA coversion example

• Given an NFA N:

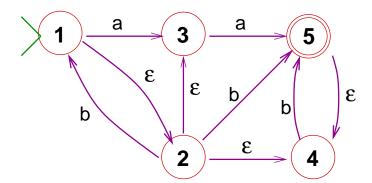


• Mark as "on" the states reachable on entry:

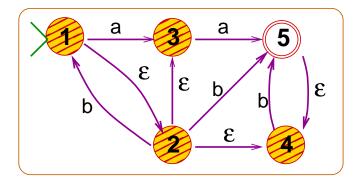


#### An NFA-to-DFA coversion example

• Given an NFA N:

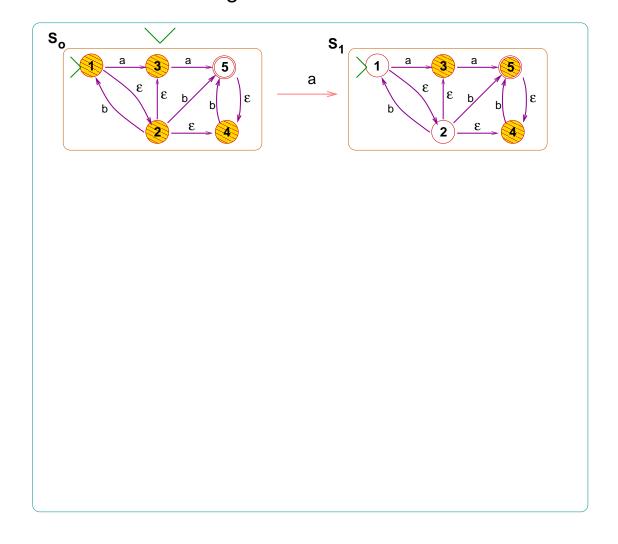


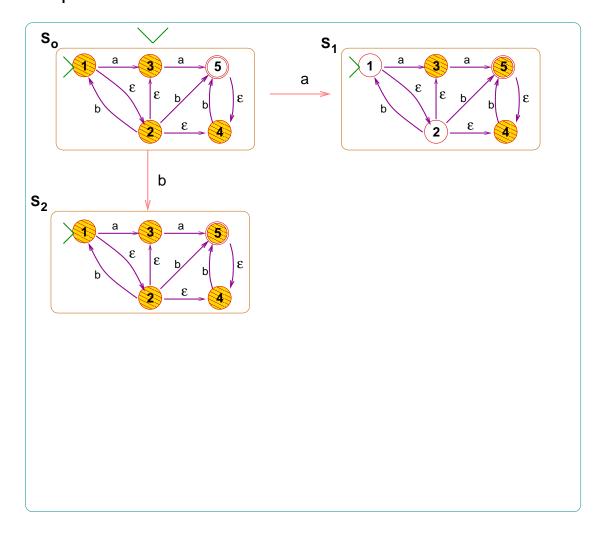
• Mark as "on" the states reachable on entry:

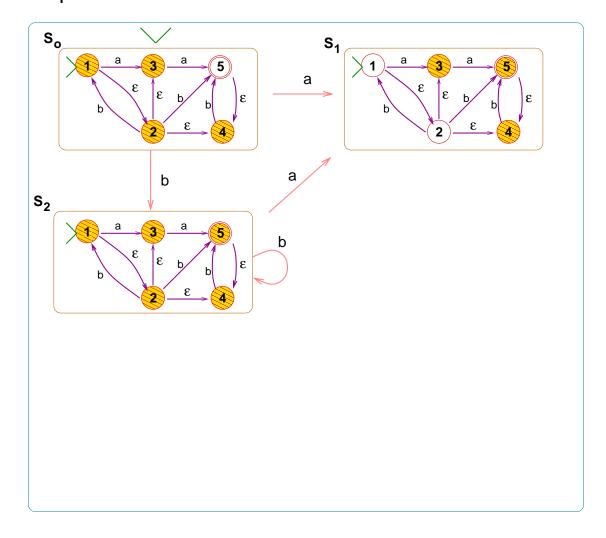


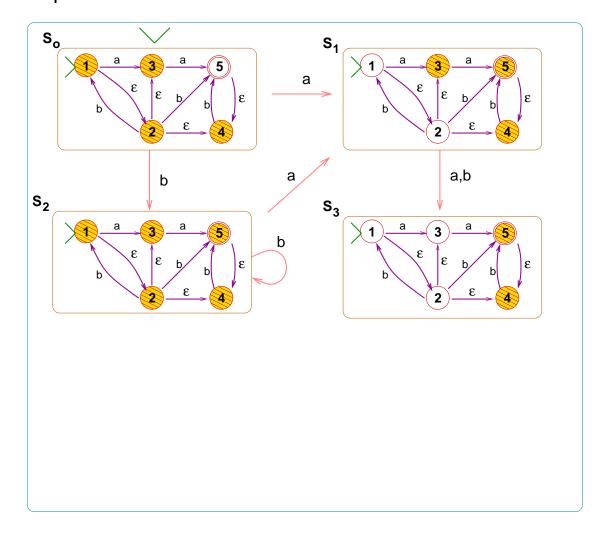
• This "super-state" is the *start-state* of our DFA.

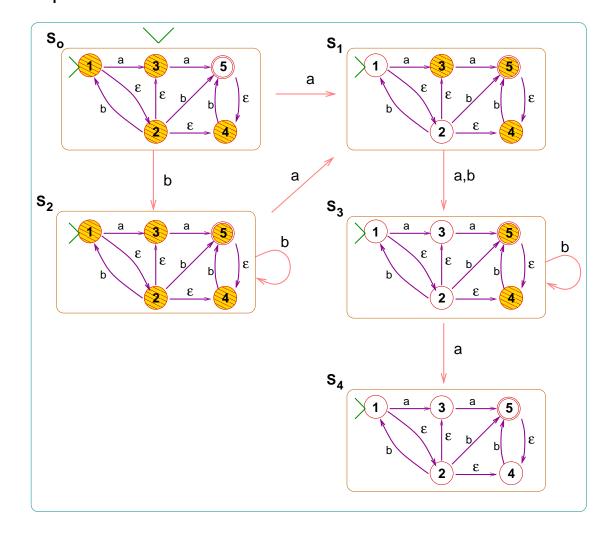
• The possible states on reading an a:



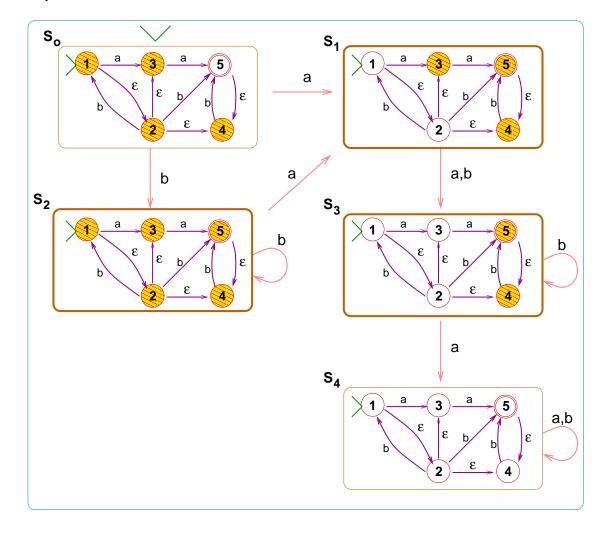




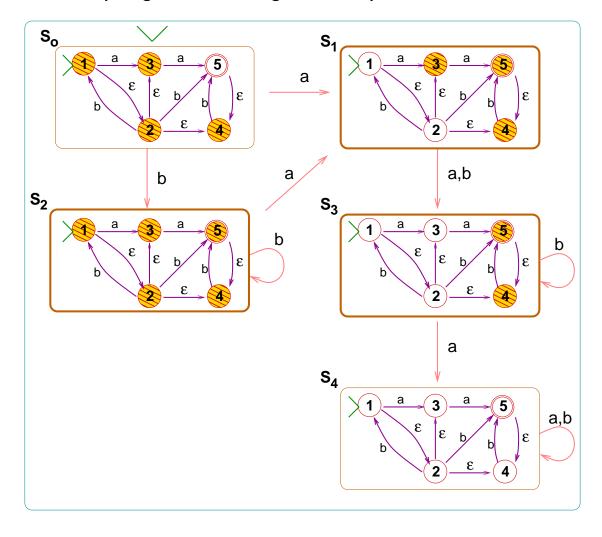




• Explore the super-states of reachable states:



• A super-state is accepting if containing an accept-state:

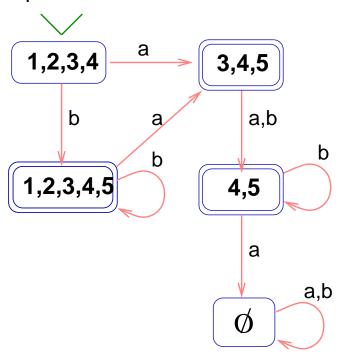


### The resulting DFA

• We have constructed from the NFA N an equivalent DFA! Each state of the DFA obtained is a "super-state" of N 's states:

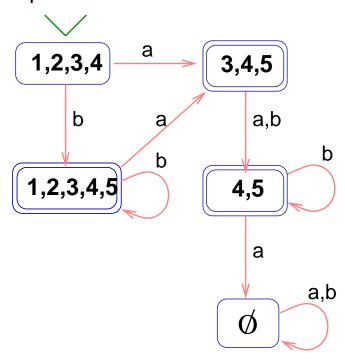
### The resulting DFA

• We have constructed from the NFA N an equivalent DFA! Each state of the DFA obtained is a "super-state" of N 's states:



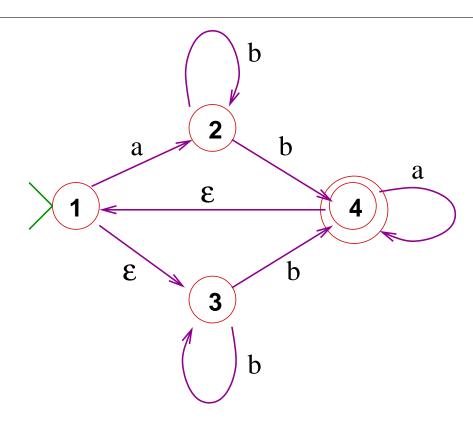
### The resulting DFA

• We have constructed from the NFA N an equivalent DFA! Each state of the DFA obtained is a "super-state" of N 's states:

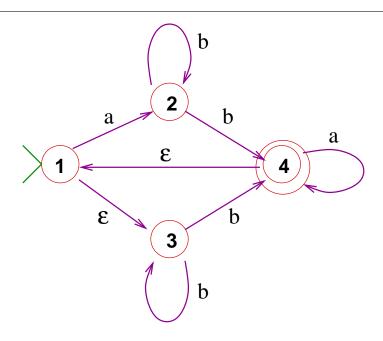


• We labeled here each state as the super-state it represents.

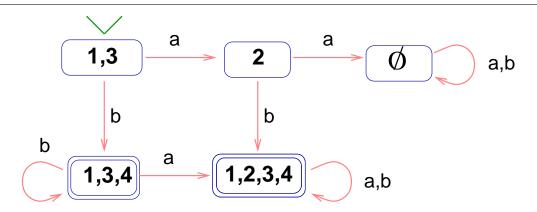
# Another example



# Another example

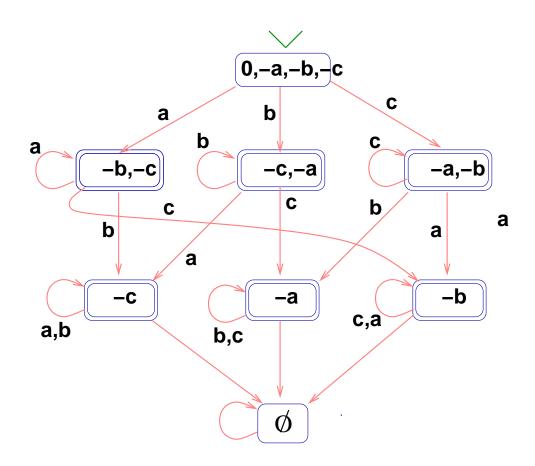


# Another example

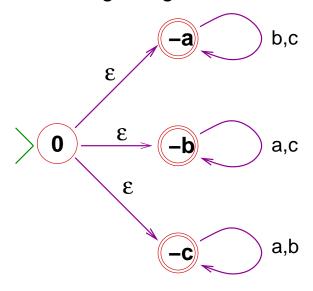


### An exponential explosion

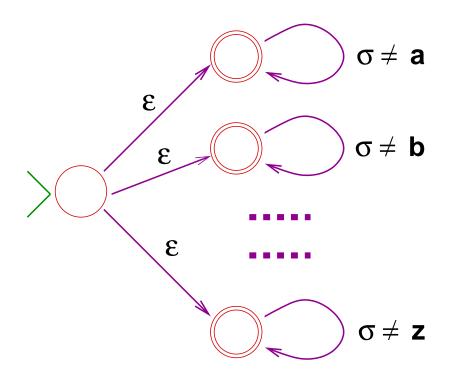
- If N has n states, then the DfA obtained may have up to  $2^n$  states.
- Is that necessary?
- No! Consider the language of strings over {a,b,c} that miss at least one letter.
- The smallest DFA recognizing it is



• But here is a 4-state NFA recognizing it:



- For "missed-som" language over the Latin alphabet the smalles recognizing automaton has  $2^{26}>67\,$  million states!
- But here is a 27 state NFA recognizing it:



F23

### RECALL: Uniting three definitions

- We'll see that the following properties of languages are equivalent.
  - ► *L* is basic IMPLIES
  - ► *L* is recognized by an automaton
  - ► *L* is regular
  - ► *L* has finitely many residues

# **BASIC LANGUAGES ARE RECOGNIZED**

### Finite languages are recognized

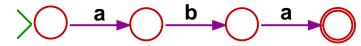
is recognized by an NFA with one *non-accepting* state and no transitions.

### Finite languages are recognized

- is recognized by an NFA with one *non-accepting* state and no transitions.
- $\{\varepsilon\}$  is recognized by an NFA with one *accepting* state and no transitions.

### Finite languages are recognized

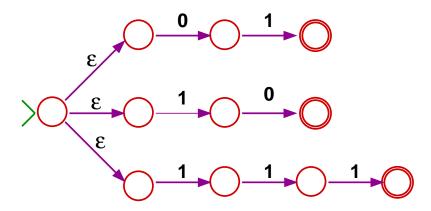
- is recognized by an NFA with one *non-accepting* state and no transitions.
- {ε} is recognized by an NFA with one accepting state and no transitions.
- A string aba is recognized by the NFA



. Similarly for other strings.

• A finite language  $\{w_1,\ldots,w_k\}$  is recognized by an NFA with  $\varepsilon$ -branching to k NFAs recognizing  $\{w_1\}$  through  $\{w_k\}$ .

- A finite language  $\{w_1,\ldots,w_k\}$  is recognized by an NFA with  $\varepsilon$ -branching to k NFAs recognizing  $\{w_1\}$  through  $\{w_k\}$ .
- Example  $\{01, 10, 111\}$  is recognized by



### The complement of a recognized lang is recognized (reminder)

• As we have seen:

If a language L is recognized by DFA M, then its complement is recognized by the DFA  $\bar{M}$ 

obtained by switching in M acceptance and non-acceptance.

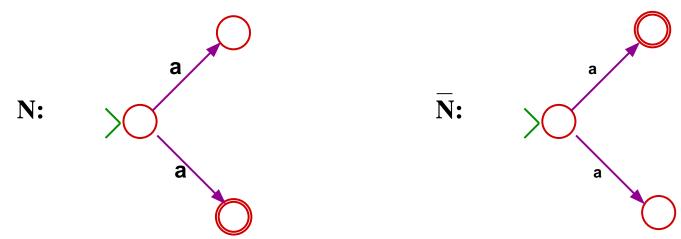
### The complement of a recognized lang is recognized (reminder)

• As we have seen:

If a language L is recognized by DFA M, then its complement is recognized by the DFA  $\bar{M}$ 

obtained by switching in M acceptance and non-acceptance.

Note: This idea doesn't work for NFAs:

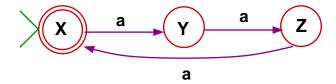


NFA N accepts a and so does  $\bar{N}$ .

# The intersection of recognized languages is recognized (reminder)

Let 
$$\Sigma = \{a, b\}$$
.

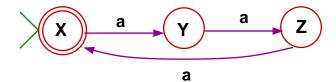
• Suppose  $M_3$  recognizes  $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3) \}$ 



# The intersection of recognized languages is recognized (reminder)

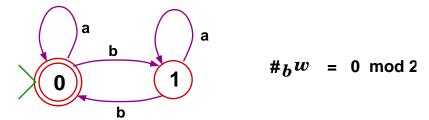
Let 
$$\Sigma = \{a, b\}$$
.

• Suppose  $M_3$  recognizes  $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3) \}$ 

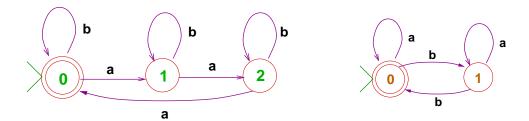


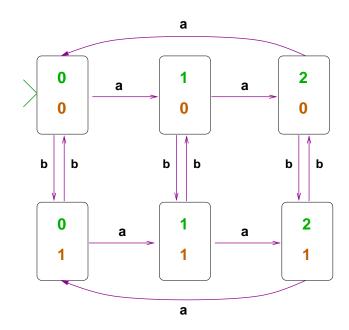
and

•  $M_2$  recognizes  $L_2 = \{w \in \Sigma^* \mid \#_b(w) = 0 \mod (2) \}$ .



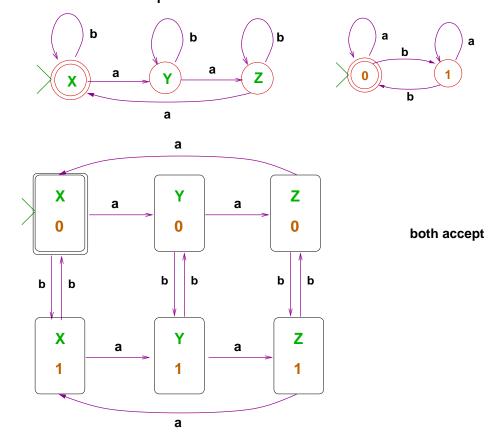
# Two automata collaborating





# Conjuctive pairing

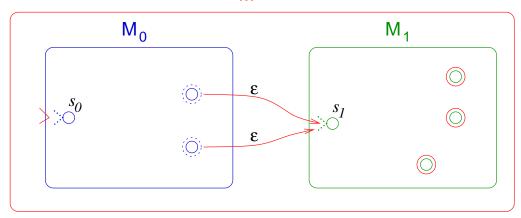
• Accepting when both accept:



• Given  $L_0=\mathcal{L}(M_0)$  where  $M_0=(Q_0,s_0,A_0,\delta_0)$  and  $L_1=\mathcal{L}(M_1)$  where  $M_1=(Q_1,s_1,A_1,\delta_1).$ 

- Given  $L_0=\mathcal{L}(M_0)$  where  $M_0=(Q_0,s_0,A_0,\delta_0)$  and  $L_1=\mathcal{L}(M_1)$  where  $M_1=(Q_1,s_1,A_1,\delta_1).$
- Here's an NFA M that recognizes  $L_0 \cdot L_1$ :

M

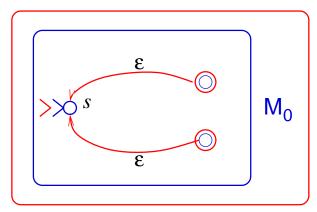


- Given  $L_0=\mathcal{L}(M_0)$  where  $M_0=(Q_0,s_0,A_0,\delta_0)$  and  $L_1=\mathcal{L}(M_1)$  where  $M_1=(Q_1,s_1,A_1,\delta_1).$
- If  $w=u\cdot v$  where  $u\in L_0$  and  $v\in L_1$  then  $s_0\stackrel{u}{\to}a_0\stackrel{\epsilon}{\to}s_1\stackrel{v}{\to}a_1$  for some  $a_0\in A_0$  and  $a_1\in A_1$ , M accepts w.

- Given  $L_0=\mathcal{L}(M_0)$  where  $M_0=(Q_0,s_0,A_0,\delta_0)$  and  $L_1=\mathcal{L}(M_1)$  where  $M_1=(Q_1,s_1,A_1,\delta_1).$
- Conversely, Suppose w is accepted by M,  $s_0 \stackrel{w}{\to} A_1$ . The trace starts in  $Q_0$  and ends in  $Q_1$ , so it must have a transition  $q \to p$  for some  $q \in Q_0$  and  $p \in Q_1$ . The only such transitions are  $a \stackrel{\epsilon}{\to} s_1$  for  $a \in A_0$ . M has no trasitions from  $Q_1$  to  $Q_0$ , so the trace must be for  $s_0 \stackrel{u}{\to} a \stackrel{\epsilon}{\to} s_1 \stackrel{v}{\to} a'$  for some u accepted by  $M_0$  and some v accepted by  $M_1$ . Hence  $w = u \cdot v \in L_0 \cdot L_1$ .

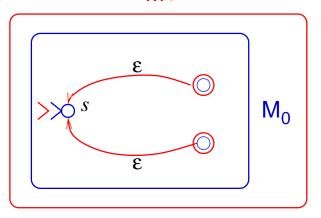
### The plus and star of a recognized language are recognized

• Given a language  $L=\mathcal{L}(M)$  here's an NFA  $M^+$  recognizing  $L^+$ :



### The plus and star of a recognized language are recognized

• Given a language  $L=\mathcal{L}(M)$  here's an NFA  $M^+$  recognizing  $L^+$ :



• Since  $L^* = L^+ \cup \{ \epsilon \}$ ,  $L^*$  is also recognized.

F23

• Induction on the dfn of basic languages. We showed:

- Induction on the dfn of basic languages. We showed:
- Finite languages are recognized.

- Induction on the dfn of basic languages. We showed:
- Finite languages are recognized.
- Set operations yield recognized languages from recognized languages (proofs using DFAs)

- Induction on the dfn of basic languages. We showed:
- Finite languages are recognized.
- Set operations yield recognized languages from recognized languages (proofs using DFAs)
- Language operations yield recognized languages from recognized languages (proofs using NFAs)

- Induction on the dfn of basic languages. We showed:
- Finite languages are recognized.
- Set operations yield recognized languages from recognized languages (proofs using DFAs)
- Language operations yield recognized languages from recognized languages (proofs using NFAs)
- So by induction on basic language every basic language is recognized.

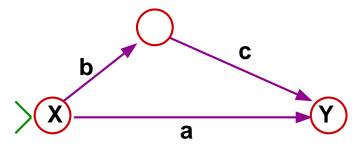
F23

### Uniting three definitions (reminder)

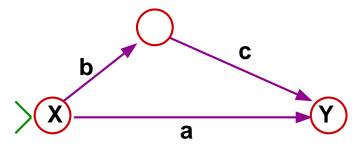
- We'll see that the following properties of languages are equivalent.
  - ► *L* is basic
  - ► *L* is recognized by an automaton IMPLIES
  - ► *L* is regular
  - ► *L* has finitely many residues

# **EVERY RECOGNIZED LANGUAGE IS REGULAR**

• What strings are leading from **X** to **Y**?

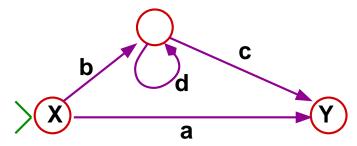


• What strings are leading from **X** to **Y**?

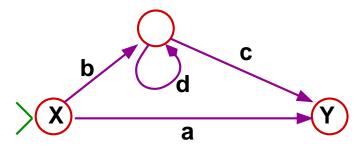


aUbc

• What strings are leading from **X** to **Y**?

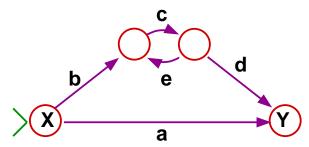


• What strings are leading from **X** to **Y**?

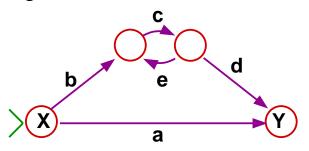


a U bd\*c

• What strings are leading from **X** to **Y**?



 $\bullet$  What strings are leading from  $\boldsymbol{X}$  to  $\boldsymbol{Y}?$ 

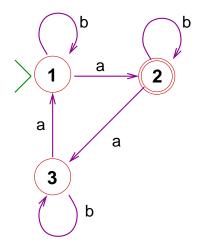


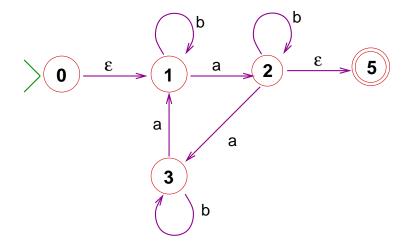
### Graphs with reg-exps as labels

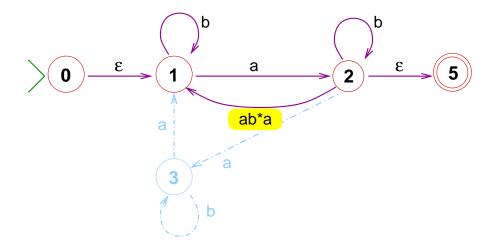
- Starting with the given NFA,

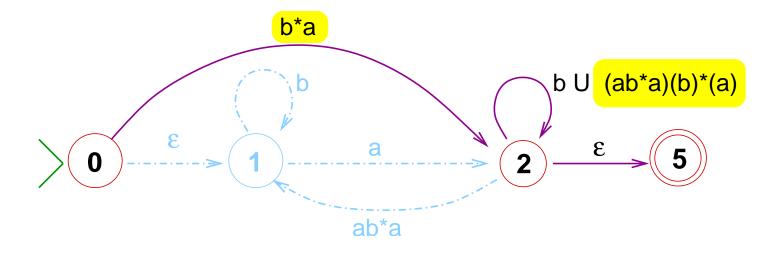
  Collapse labels: eg, replace  $q \xrightarrow{a,b,\epsilon} p$  by  $q \xrightarrow{a \cup b \cup \epsilon} p$
- ▶ Create a new start state  $s_0$  with an  $\varepsilon$ -transition to the original start state of N.
- ▶ Create a new state  $a_0$  as the only accepting state, and create an  $\varepsilon$ -transition from each accepting state of N to  $a_0$ .

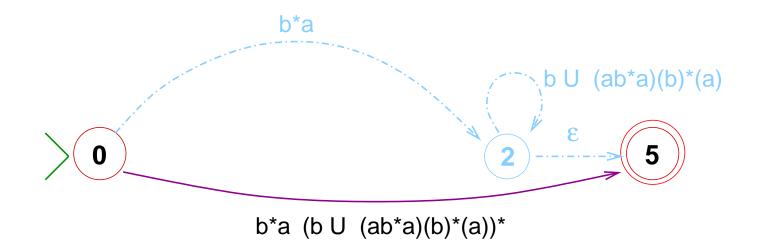
## A working example





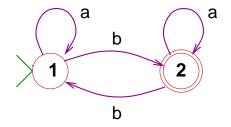


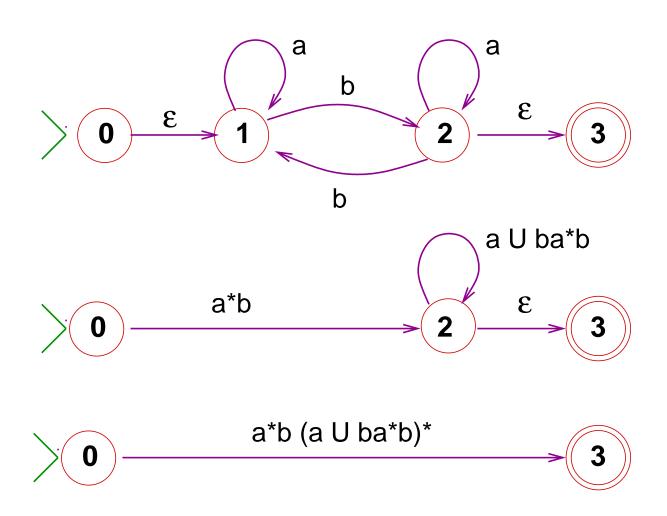




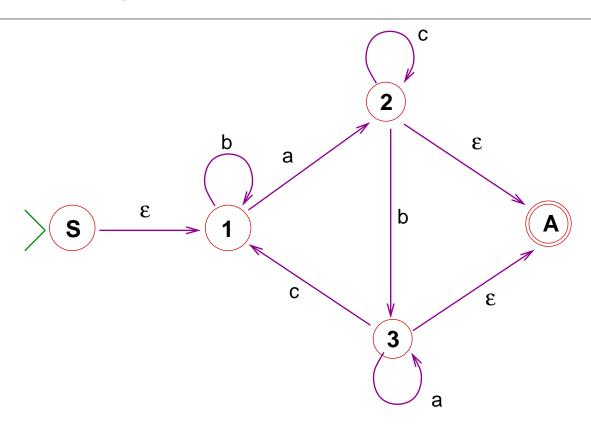
$$\mathcal{L}(N) = \mathcal{L}(b^* \cdot a \cdot (b \cup (a \cdot b^* \cdot a) \cdot (b)^* \cdot (a))^*)$$

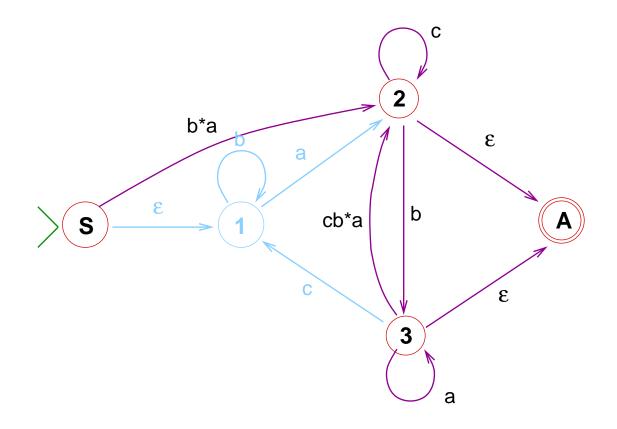
## Another example

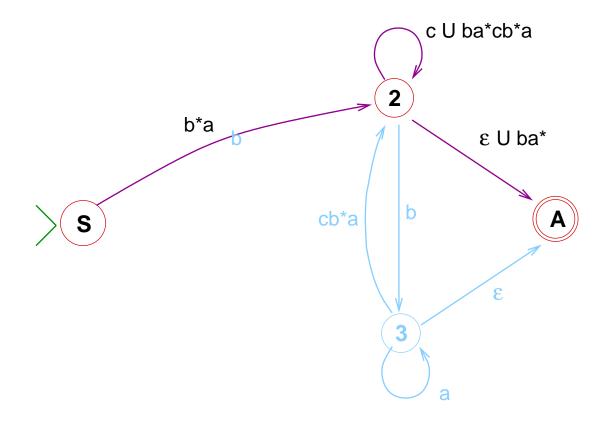


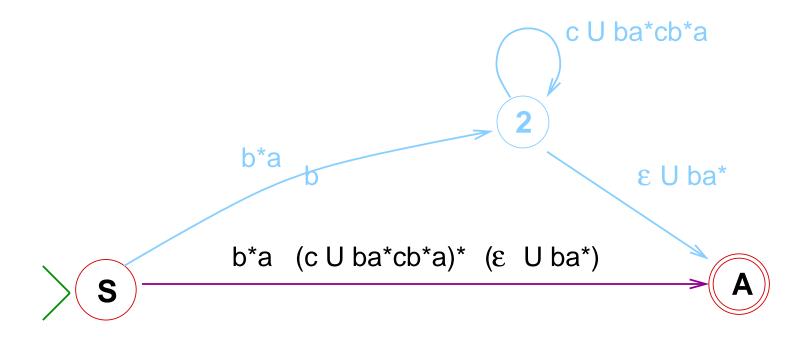


## Yet another example









### The underlying math

- NFAs are not generated from components: transition rules can go any which way.
- So how can be reason inductively about all NFAs?
- Look closer to what we want to prove: Given an NFA  $M=(Q,s,A,\Delta)$  over an alphabet  $\Sigma$ , find a regular expression that denotes  $\{w\mid s \stackrel{w}{\to} A\}$ .
- As was the case for the Unique Parsing Theorem, we up the ante to make this work.

### Limitting the stepping stones

- For sets  $T \subseteq Q$ , consider the relation  $q \xrightarrow{w(T)} p$  that holds when w leads from q to p using only states in T.
- In particular  $q \xrightarrow{w(Q)} p$  means  $q \xrightarrow{w} p$ .
- Goal: For states q,p and  $T\subseteq Q$   $\{w\mid q\xrightarrow{w(T)}p\}$  is denoted by some regexp  $\alpha^{q\to p(T)}$ .
- <u>Base</u>:  $T = \emptyset$ , and  $\alpha^{q \to p(\emptyset)}$  must denote the set of  $\sigma \in \Sigma_{\epsilon}$  for which  $q \xrightarrow{\sigma} p$  is in the transition.

  Take the union of those.
- Step: Given T and state  $r \notin T$ , and considering  $T \cup \{r\}$ , define  $\alpha_{T+r}^{q \to p}$  in terms of expressions  $\alpha_T$ .
- We have  $q \xrightarrow{w(T+r)} p$  iff either  $q \xrightarrow{w(T)} p$  or  $w = \underbrace{u \cdot x_1 \cdot \dots \cdot x_k \cdot v}$ , where  $q \xrightarrow{u(T)} r \xrightarrow{x_1(T)} r \cdots \xrightarrow{x_k(T)} r \xrightarrow{v(T)} p$

• So define 
$$lpha_{T+r}^{q o p} = lpha_T^{q o p} \cup lpha_T^{q o r} \cdot (lpha_T^{r o r})^* \cdot lpha_T^{r o p}$$

- One concern: to preserve info about acceptance we should not eliminate the start state or any accepting state.
- Solution:
  - 1. New start  $s_0$  with  $s_0 \stackrel{\epsilon}{\rightarrow} s$ ;
  - 2. New unique accept  $a_0$  with  $a \stackrel{\epsilon}{\to} a_0$  for each  $a \in A$ .
  - 3. Now  $\mathcal{L}(N) = \alpha_Q^{s_0 \to a_0}$ . QED
- We showed an algorithmic implementation of the construction above.

# **TWO-WAY DFAs**

### A stronger read-only deterministic device

- Consider the language *L* over [a z]
   of words that include all letters.
   No English word is in *L*, but probably every book.
- L is a regular language: it is the intersection of the 26 languages  $\{w \mid w \text{ has } \sigma\}$  for  $\sigma = \mathtt{a},\mathtt{b}....$
- The smallest DFA that recognizes L has  $> 2^{26} > 67,000,000$  states.
- The smallest NFA recognizing L has 27 states.
- Is there a *deterministic* <u>algorithm</u> that does it with a manageable number of states?

### A deterministic algorithm for the all-letters problem

- Algorithm: Scan for each digit separately, and repeat.
- This cannot be done if we only read forward!
   The cursor would have to be scrolled back (or repositioned).
- SO let's imagine a device that behaves just like an automaton, but can move the cursor both ways.

### Some challenges

- Symbol read determines not only next state, but also next move: forward or backward.
- To detect the ends of the input string it must have end-markers, say > (the gate) on the left, and □ (the blank) on the right.
- Termination is not by reading through, but needs to be declared by a final accept state. (We need not guarantee termination.)

### Two-way automata

### A **two-way automaton (2DFA)** over an alphabet $\Sigma$ :

- Finite set of states Q
- $s \in Q$ , the initial state
- $a \in S$ , the accepting state
- Transition <u>partial</u>-function:  $\delta: Q \times \Gamma \rightarrow Q \times Act$  where  $\Gamma = \Sigma \cup \{>, \sqcup\}$  and  $Act = \{+, -\}$ .
- Write  $q\stackrel{\sigma(lpha)}{
  ightarrow} p$  for  $\delta(q,\sigma)=\langle p,lpha
  angle$

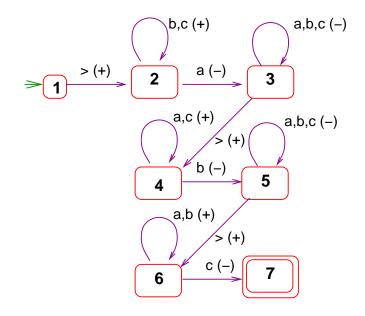
#### Two-way automata

- $\delta: Q \times \Gamma \rightharpoonup Q \times \mathsf{Act}$  where  $\Gamma = \Sigma \cup \{>, \sqcup\}$  and  $\mathsf{Act} = \{+, -\}$ .
- Write  $q\stackrel{\sigma(\alpha)}{
  ightarrow} p$  for  $\delta(q,\sigma)=\langle p, lpha
  angle$

#### The intent:

- $\Gamma$  end-markers  $\gt$  (gate) and  $\bigsqcup$  (blank) added to  $\Sigma$
- Example: Input 001201 appears as >001201 ⊔
- The actions + and stand for "step forward" and "step back."

### **Example: The strings using all of a,b,c**



• With 26 in place of 3 we'd have 53 states, as opposed to > 67,000,000 states in the smallest DFA!

### Operation of 2DFAs: configurations

- For DFAs we could generate the relation  $p \stackrel{w}{\rightarrow} q$  inductively, as a function of w.
- This is no longer the case for 2DFAs:
   here we must account for the cursor position
   and keep record of the entire input for future use.
- A  $\overline{\text{cursored-string}}$  over  $\Sigma$  is a  $\Sigma$ -string with one underlined symbol-position.
- A **configuration** (cfg) is a pair  $(q, \check{w})$  where
  - ightharpoonup q is a state, and
  - $ightharpoonup \check{w}$  is a cursored-string, That is, (state, cursored-string).
- Example:  $(q, > 0101\underline{1}00 \sqcup)$
- The *initial cfg for input w* is the cfg  $(s, \ge w \sqcup)$ .

#### The YIELD relation

• The  $\underline{\textit{Yield}}$  relation  $\Rightarrow$  (or  $\Rightarrow_{M}$  when it matters which  $\underline{M}$ ) is obtained by:

•

- $\vdash \text{ If } q \stackrel{\gamma(+)}{\to} p$  then  $(q, u \underline{\gamma} \tau v) \Rightarrow (p, u \underline{\gamma} \underline{\tau} v)$
- $\vdash \text{ If } q \stackrel{\gamma(-)}{\to} p$  then  $(q, u\tau \underline{\gamma} v) \Rightarrow (p, u\underline{\tau} \gamma v)$
- ► Nothing else
- If the given cfg is (q, 011010), and  $q \stackrel{0(+)}{\longrightarrow} p$ , then the transition above does not apply.

The same holds when invoking a transition  $q \stackrel{0(-)}{\rightarrow} p$  for a configuration with a cursor at the head of the string, such as (q, 011010).

### Traces, acceptance, recognition

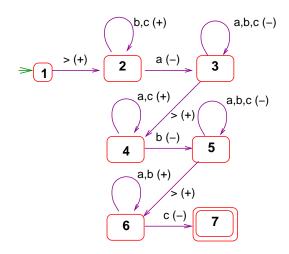
- A cfg  $c = (q, u\gamma v)$  is **terminal** if no transition applies (no yield). It is a **accepting** its state is accepting state a.
- A trace of M for input w is a sequence of

$$c_0 \Rightarrow c_1 \Rightarrow \cdots$$

where  $c_0$  is initial for w, and either

- 1. the sequence is infinite; or
- 2. the sequence is finite, and its last cfg is terminal.
- The trace is **accepting** if it is finite and its last cfg is accepting.
- M accepts  $w \in \Sigma^*$  if it its trace for input w is accepting.
- The language  $\fbox{recognized}$  by M is  $\mathcal{L}(M) = \{w \in \Sigma^* \mid M \text{ accepts } w \}$

### **Example**

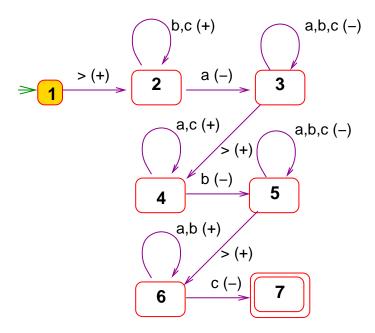


Accepting trace for trace of M above for w = bcab:

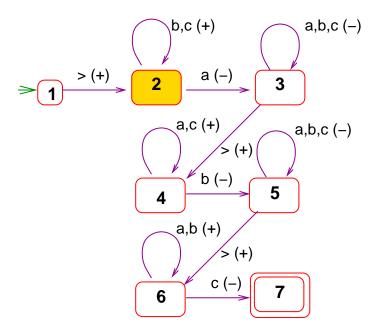
```
\begin{array}{ll} (1, \geq bcab \sqcup) \\ \Rightarrow (2, > \underline{b}cab \sqcup) \\ \Rightarrow (2, > b\underline{c}ab \sqcup) \\ \Rightarrow (2, > b\underline{c}ab \sqcup) \\ \Rightarrow (2, > bc\underline{a}b \sqcup) \\ \Rightarrow (3, > \underline{b}cab \sqcup) \\ \Rightarrow (3, > \underline{b}cab \sqcup) \\ \Rightarrow (3, \geq \underline{b}cab \sqcup) \\ \Rightarrow (3, \geq \underline{b}cab \sqcup) \\ \Rightarrow (3, \geq \underline{b}cab \sqcup) \end{array}
```

F23

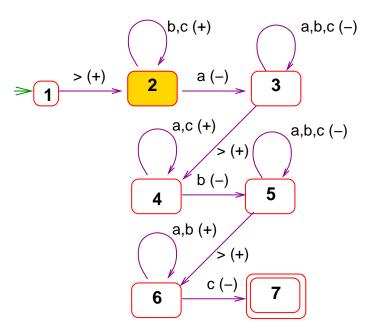
#### $(1, \geq bcab \sqcup)$



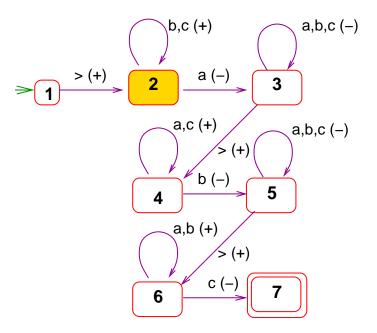
#### $(2, > \underline{b} cab \sqcup)$



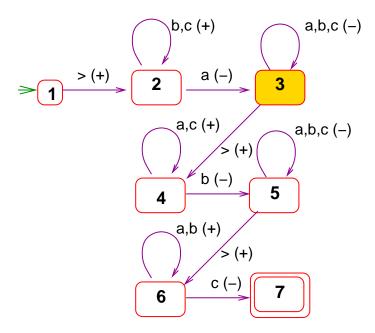
#### $(2, >b\underline{c}ab\sqcup)$



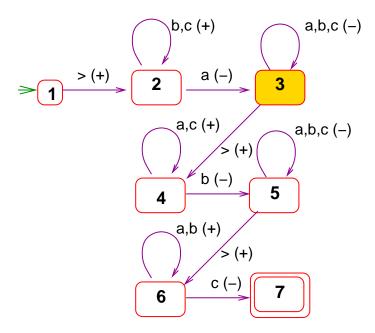
### $(2, >bc\underline{a}b\sqcup)$



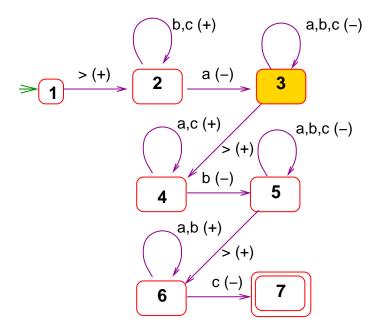
### $(3, >b\underline{c}ab \sqcup)$



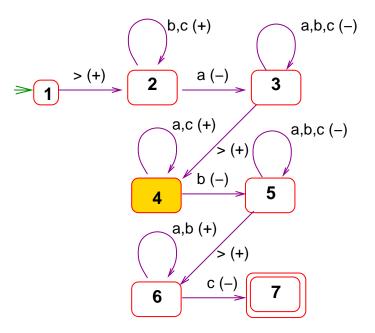
# $(3, > \underline{b} cab \sqcup)$



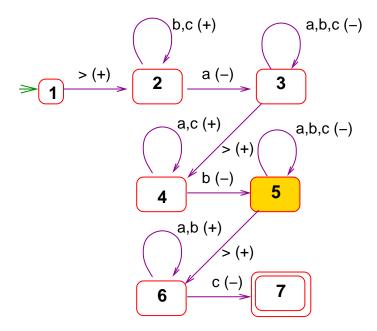
#### $(3, \geq bcab \sqcup)$



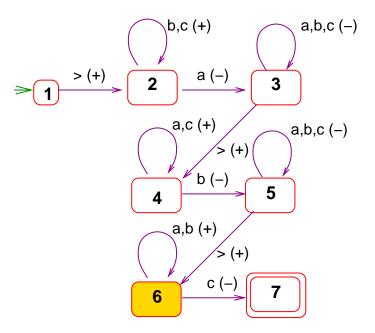
#### $(4, > \underline{b} cab \sqcup)$



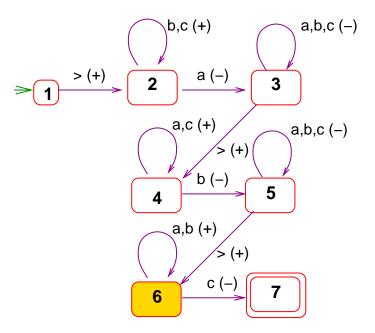
#### $(5, \geq bcab \sqcup)$



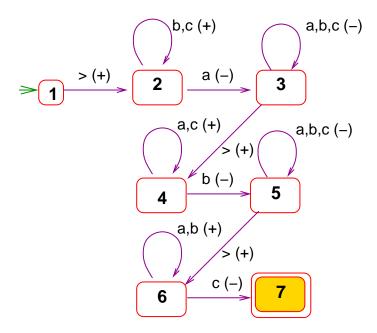
### $(6, > \underline{b} cab \sqcup)$



#### $(6, >b\underline{c}ab\sqcup)$



# $(7, > \underline{b} cab \sqcup)$



# Two-way automata recognize just regular languages!

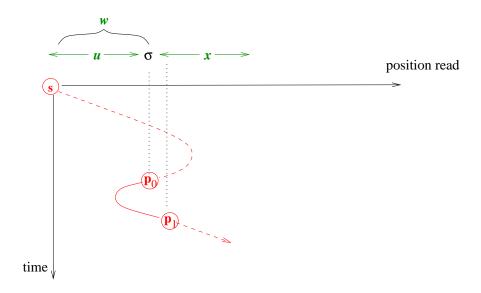
- Yet another characterization of regular languages!
- Adding nondeterminism to 2DFA still recognizes just regular languages!
- We still avoid extensible memory, so this is not a big surprise.

#### **Proof outline**

- DFA recognize languages with finitely many residues L/w.
- For each w a finite amount of info suffices to decide  $x \in L/w$ .
- For DFA the info is the state q reached:  $s \stackrel{w}{\rightarrow} q$ .
- For 2DFA the scan might cross out of  $\boldsymbol{w}$  and into  $\boldsymbol{x}$ . back in, and then out again into  $\boldsymbol{x}$ .
- This is the info needed about w:

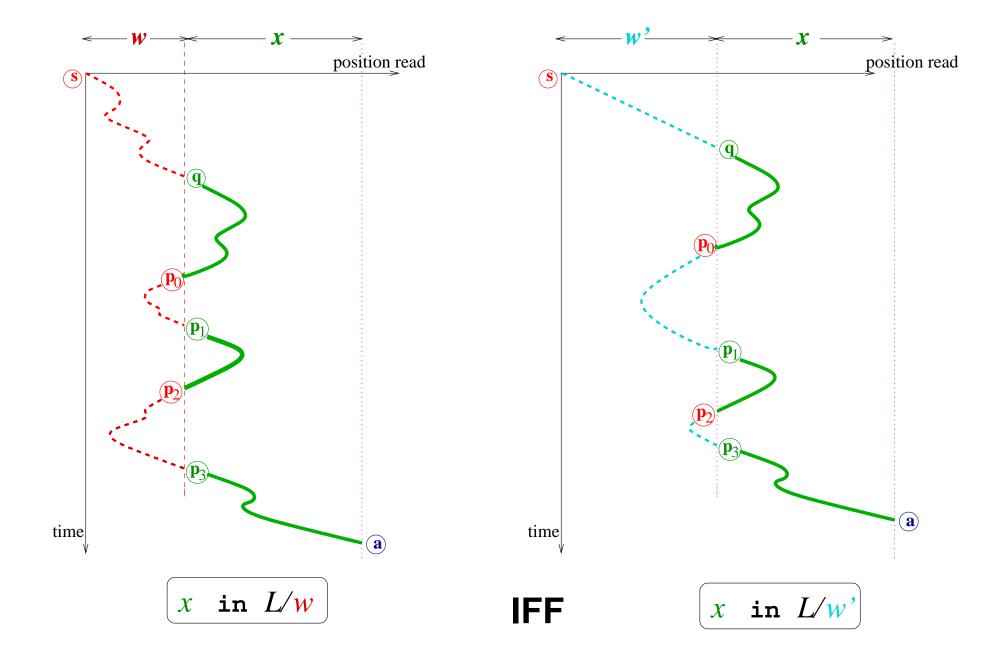
  If the reading cross back into w in a state
- The extra info:

```
the pairs (in, out) of states
s.t. crossing back into w in state in
leads to crossing back out in state out.
```



#### Every language recognized by a is regular!

- Say that  $\langle p_0, p_1 \rangle$  is a back-crossing pair.
- L/w is determined by q reached by reading w, plus the set of back-crossing pairs for w: if w, w' reach the same state, and have the same crossing pairs, then L/w = L/w'.



- For M with k states there are  $k^2$  potential back-crossing pairs, and so  $2^{k^2}$  possible descriptions of the situation at the border.
- Finitely many residues, albeit a lot, but still recognizing a regular language!