
MATHEMATICAL MACHINES

Computing

• Most computing consists in actions that modify data:

◮ The data is textual

◮ The actions are discrete: well-defined and single-step.

Computing

• Most computing consists in actions that modify data:

◮ The data is textual

◮ The actions are discrete: well-defined and single-step.

• The data is textual because discrete data has textual representation.

(Though not all computing is discrete, eg Analog Computing is not.)

F23 2

Acceptors

• What algorithms do.

Acceptors

• What algorithms do.

• Two main options: acceptors and transducers.

• An acceptor is an algorithm that takes a textual input

(representing input data)

and upon termination may or may not issue accept as output.

Acceptors

• What algorithms do.

• Two main options: acceptors and transducers.

• An acceptor is an algorithm that takes a textual input

(representing input data)

and upon termination may or may not issue accept as output.

• An acceptor that terminates for all input is a decider.

• When a decider terminate for an input without accepting

we say that it rejects the input.

• A decider is thus a solution for a decision problem.

F23 3

Transducers

• A transducer is an algorithm that takes strings as input,

and upon termination yields a string as output.

Transducers

• A transducer is an algorithm that takes strings as input,

and upon termination yields a string as output.

• A transducer computes a partial-function

(i.e. univalent mapping).

Transducers

• A transducer is an algorithm that takes strings as input,

and upon termination yields a string as output.

• A transducer computes a partial-function

(i.e. univalent mapping).

• An acceptor can be viewed as a transducer

with accept as the only possible output;

and a decider as a total transducer with accept and reject

as the only possible outputs.

F23 4

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

◮ Random-access, or sequential reading?

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

◮ Random-access, or sequential reading?

• We start with the automaton,

an acceptor with no external memory that reads its input sequentially!

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

◮ Random-access, or sequential reading?

• We start with the automaton,

an acceptor with no external memory that reads its input sequentially!

• This model captures the behavior of

many familiar physical devices.

Let’s look at a couple of very simple ones.

F23 5

The electric switch

toggle

toggle

• The position of the switch is inverted

after an odd number of toggles,

and remains unchanged after an even number.

F23 6

The ceiling fan

• A ceiling fan with manual cord-controlled:

The speed is incremented (mod 2) with each pull.

0

1 2

pull

pull

pull

F23 7

The toll-turnstile

• The turnstile can be in one of two states: locked or unlocked.

• The action insert token

changes the state locked into unlocked.

• The action push and pass

changes the state unlocked into locked.

F23 8

States

• A core concept of mathematical machines is the state.

• E.g. a state of an elevator might consist of

its position, motion (up, down, rest), upcoming destinations, time idle, etc.

• States are often labeled, for convenience, but don’t have to be.

States

• A core concept of mathematical machines is the state.

• E.g. a state of an elevator might consist of

its position, motion (up, down, rest), upcoming destinations, time idle, etc.

• States are often labeled, for convenience, but don’t have to be.

• Given a practical problem, deciding what are the relevant “states”

often requires careful analysis.

• But once a mathematical model is distilled,

the states become an abstraction,

which we can represent graphically, e.g. by a circle.

F23 9

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

• We focus for now on transitions that are functions,

i.e. univalent and total.

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

• We focus for now on transitions that are functions,

i.e. univalent and total.

• A pair of states related by a transition-rule aaa is an action of aaa.

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

• We focus for now on transitions that are functions,

i.e. univalent and total.

• A pair of states related by a transition-rule aaa is an action of aaa.

• For the toll-turnstile and the stopwatch

the transition-rules are determined by certain human actions.

F23 10

Textual form of transitions

• Since all finite discrete structures have simple textual codes,

we can assume that:

1. All input data is textual

2. Each transition is coded by a single reserved letter

3. The action of the transition labeled aaa

is the reading (i.e. consumption) of aaa,

much like the movement of a cursor.

bracadabraa

bracadabra

a

F23 11

A transition system

• A transition-system consists of a set of states

and transition-rules over them.

A transition system

• A transition-system consists of a set of states

and transition-rules over them.

• So a transition-system can be represented as a labeled di-graph:

The nodes are the states,

and the the actions are labeled edges.

A transition system

• A transition-system consists of a set of states

and transition-rules over them.

• So a transition-system can be represented as a labeled di-graph:

The nodes are the states,

and the the actions are labeled edges.

• When all transition-rules are functions,

there is exactly one edge for each state and action:
a

bb

a

b

a a,ba b

A transition system

• A transition-system consists of a set of states

and transition-rules over them.

• So a transition-system can be represented as a labeled di-graph:

The nodes are the states,

and the the actions are labeled edges.

• When all transition-rules are functions,

there is exactly one edge for each state and action:
a

bb

a

b

a
a,b

We merge arrow-labels for readability.

Example: Detecting an odd number of actions

• Consider the switch.

We represent the transition “toggle” by the letter aaa ,

and label the states as 1 and 2:

1 2

a

a

Example: Detecting an odd number of actions

• Consider the switch.

We represent the transition “toggle” by the letter aaa ,

and label the states as 1 and 2:

1 2

a

a

• The device reads strings of aaa’s,

and with each letter read it switch state.

• Reading odd number of aaa ’s leads to the opposite state.

• The physical nature of the toggle action is no longer present,

and is indeed irrelevant.

F23 13

Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1

a

a

2

Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1

a

a

2

Where do the strings of length 1,3,... odd nnn lead?

Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1 2

a

a

• The strings of odd length leads to state 2,

so to accept just those strings we’d set 2

as the unique accepting state.

• We do this graphically by doubling the contour of state 2.

• In general there can be several accepting states.

F23 14

Initial state can be accepting

• It is possible that the initial state is accepting.

• To accept the strings of even length

set 1 as the only accepting state:

1 2

a

a

F23 15

The device in action

• Device accepting odd length:

2

2

2

2

READING

aa

aaa

a

a

a

1

a

a

1

a

a

1

a

a

1
string accepted IFF has odd
aaa accepted

 #a

F23 16

The device in action

• Device accepting even length:

2

2

2

2

READING

aa

aaa

a

a

a

a

a

a

a

a

a

1

1

1

1
string accepted IFF has even
aaa not accepted

#a

F23 17

Definition of automata

• An automaton, aka deterministic finite automaton (DFA)

consists of

◮ An alphabet ΣΣΣ .

Definition of automata

• An automaton, aka deterministic finite automaton (DFA)

consists of

◮ An alphabet ΣΣΣ .

◮ A non-empty finite set QQQ of objects called states .

◮ One state s ∈ Qs ∈ Qs ∈ Q singled out as initial-state (or initial-state).

◮ A set A ⊆ SA ⊆ SA ⊆ S of states singled out as accepting states .

Definition of automata

• An automaton, aka deterministic finite automaton (DFA)

consists of

◮ An alphabet ΣΣΣ .

◮ A non-empty finite set QQQ of objects called states .

◮ One state s ∈ Qs ∈ Qs ∈ Q singled out as initial-state (or initial-state).

◮ A set A ⊆ SA ⊆ SA ⊆ S of states singled out as accepting states .

◮ A transition function δ : Q × Σ → Qδ : Q × Σ → Qδ : Q × Σ → Q.

Given state q ∈ Qq ∈ Qq ∈ Q and input-symbol σσσ
δ(q, σ)δ(q, σ)δ(q, σ) is the new (target) state.

• We also write q σ→ pq σ→ pq σ→ p for δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p.

Note: ppp may be the same as qqq.

F23 18

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

• MMM is over the alphabet ΣΣΣ.

We don’t mention ΣΣΣ when irrelevant or clear.

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

• MMM is over the alphabet ΣΣΣ.

We don’t mention ΣΣΣ when irrelevant or clear.

• Automaton is of Greek origin:

auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

• MMM is over the alphabet ΣΣΣ.

We don’t mention ΣΣΣ when irrelevant or clear.

• Automaton is of Greek origin:

auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

• Since automata play a central role,

they’ve acquired over time several alternative names, in particular deter-

ministic finite automaton (DFA).which we’ll frequently use.

F23 19

Some practical applications of automata

Textual applications

• Pattern matching, search engines

• Lexical analysis for compilation

• Data compression

• Automatic translation

Some practical applications of automata

Software systems

• Cyber-security

• System planning

• Information streaming

• Bio-informatics

Some practical applications of automata

Hardware systems

• Circuit design

• Robotics

Some practical applications of automata

Verification

• System modeling

• Verification of communication protocols

• Verification of embedded systems

• Model checking

F23 20

Example of a formal description

• Here’s an automaton MMM over Σ = {a,b}Σ = {a,b}Σ = {a,b} that accepts strings

with an odd number of aaa’s (and no others).

a

a

1 2

b b

Example of a formal description

• Here’s an automaton MMM over Σ = {a,b}Σ = {a,b}Σ = {a,b} that accepts strings

with an odd number of aaa’s (and no others).

a

a

1 2

b b

• Its formal definition: M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) where

⋆ Σ = {a,b}Σ = {a,b}Σ = {a,b}

⋆ Q = {1, 2}Q = {1, 2}Q = {1, 2}

⋆ s = 1s = 1s = 1

⋆ A = {2}A = {2}A = {2}

F23 21

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

• The steps of an automaton change just the state,

and the implicit move to the next input symbol.

• Since the transition mapping of an automaton is a function,

there is exactly one next-state for each symbol read.

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

• The steps of an automaton change just the state,

and the implicit move to the next input symbol.

• Since the transition mapping of an automaton is a function,

there is exactly one next-state for each symbol read.

• Computation terminates iff the end of the input string is reached.

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

• The steps of an automaton change just the state,

and the implicit move to the next input symbol.

• Since the transition mapping of an automaton is a function,

there is exactly one next-state for each symbol read.

• Computation terminates iff the end of the input string is reached.

• The essence of a DFA is in its being an online acceptor .

F23 22

Traces

• If w = σ1 · · · σnw = σ1 · · · σnw = σ1 · · · σn then we write q σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ p
to state that

q σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ p

for some states r1, . . . , rn−1r1, . . . , rn−1r1, . . . , rn−1.

Traces

• If w = σ1 · · · σnw = σ1 · · · σnw = σ1 · · · σn then we write q σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ p
to state that

q σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ p

for some states r1, . . . , rn−1r1, . . . , rn−1r1, . . . , rn−1.

• The sequence of states q, r1, r2, · · · rn−1, pq, r1, r2, · · · rn−1, pq, r1, r2, · · · rn−1, p

is a state-trace of the automaton.

F23 23

Inductive definition of traces

• The ternary relation q w→ pq w→ pq w→ p can be defined inductively,

by recurrence on www :

◮ q εεε−→ qq εεε−→ qq εεε−→ q

◮ If δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p that is q σ uσ uσ u−−→ rq σ uσ uσ u−−→ rq σ uσ uσ u−−→ r,

and p uuu−→ rp uuu−→ rp uuu−→ r then p σ→ qp σ→ qp σ→ q.

Inductive definition of traces

• The ternary relation q w→ pq w→ pq w→ p can be defined inductively,

by recurrence on www :

◮ q εεε−→ qq εεε−→ qq εεε−→ q

◮ If δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p that is q σ uσ uσ u−−→ rq σ uσ uσ u−−→ rq σ uσ uσ u−−→ r,

and p uuu−→ rp uuu−→ rp uuu−→ r then p σ→ qp σ→ qp σ→ q.

• This definition invokes no auxiliary data

that might be modified during execution.

• No mathematical machine we’ll encounter (except NFAs)

has such a definition:

They all are based on a notion of configuration,

which combines the machine’s states with modifiable data.

F23 24

Accepted strings, recognized languages

• For A ⊆ QA ⊆ QA ⊆ Q let’s write q w→ Aq w→ Aq w→ A

when q w→ pq w→ pq w→ p for some p ∈ Ap ∈ Ap ∈ A.

• MMM accepts www when s www−→ As www−→ As www−→ A.

Accepted strings, recognized languages

• For A ⊆ QA ⊆ QA ⊆ Q let’s write q w→ Aq w→ Aq w→ A

when q w→ pq w→ pq w→ p for some p ∈ Ap ∈ Ap ∈ A.

• MMM accepts www when s www−→ As www−→ As www−→ A.

• The language recognized by MMM is

L(M)L(M)L(M) === {w ∈ Σ∗ | M{w ∈ Σ∗ | M{w ∈ Σ∗ | M accepts w }w }w }

=== {w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}

• We re-use here the notation L(· · ·)L(· · ·)L(· · ·) that we used for regular expressions.

Accepted strings, recognized languages

• For A ⊆ QA ⊆ QA ⊆ Q let’s write q w→ Aq w→ Aq w→ A

when q w→ pq w→ pq w→ p for some p ∈ Ap ∈ Ap ∈ A.

• MMM accepts www when s www−→ As www−→ As www−→ A.

• The language recognized by MMM is

L(M)L(M)L(M) === {w ∈ Σ∗ | M{w ∈ Σ∗ | M{w ∈ Σ∗ | M accepts w }w }w }

=== {w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}

• We re-use here the notation L(· · ·)L(· · ·)L(· · ·) that we used for regular expressions.

• Two automata are equivalent if they recognize the same language.

F23 25

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

6. Computation stops when the input’s end is reached.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

6. Computation stops when the input’s end is reached.

7. No auxiliary memory or devices.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

6. Computation stops when the input’s end is reached.

7. No auxiliary memory or devices.

F23 26

Example: An automaton for Mod 3

2

3

1

b b

a

aa

b

• w ∈ {a,b}∗w ∈ {a,b}∗
w ∈ {a,b}∗

accepted iff #a(w) 6= 0 (mod 3)#a(w) 6= 0 (mod 3)#a(w) 6= 0 (mod 3)

F23 27

Example of an accepted string

1

b b

a

a

b

2

a

baab
3

• State 1 (initial). Nothing read yet.

F23 28

An accepted string

1

b b

a

a

b

2

a

baab
3

• Still state 1. Initial bbb read.

F23 29

An accepted string

1

b b

a

a

b

2

a

baab
3

• Read bababa, state 2.

F23 30

An accepted string

3

1

b b

a

a

b

2

a

baab

• Read baabaabaa, state 3.

F23 31

An accepted string

3

1

b b

a

a

b

2

a

baab

• Finished reading baabbaabbaab, state 3, accepted.

F23 32

A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• State 1 (initial). Nothing read yet.

F23 33

A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• Read aaa, State 2.

F23 34

A non-accepted string

3

1

b b

a

a

b

2

a

aaba

• Read aaaaaa, state 3.

F23 35

A non-accepted string

3

1

b b

a

a

b

2

a

aaba

• Read aabaabaab, state 3.

F23 36

A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• Finished reading aabaaabaaaba, state 1, not accepted.

F23 37

A computation trace

• For our example above, the computation for the string baabbaabbaabbaabbaabbaabbaabbaabbaab is

1 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 31 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 31 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 3.

Abbreviated notation: 1 baabbaabbaab−−−→ 31 baabbaabbaab−−−→ 31 baabbaabbaab−−−→ 3

• The computation for the string aabaaabaaabaaabaaabaaabaaabaaabaaaba is

1 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 11 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 11 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 1.

Abbreviated notation: 1 aabaaabaaaba−−−→ 31 aabaaabaaaba−−−→ 31 aabaaabaaaba−−−→ 3

F23 38

Example: Addition mod 4

• The following automaton is over the alphabet {0, 1, 2, 3}{0, 1, 2, 3}{0, 1, 2, 3}

• It accept a string of digits iff they add up to 2 modulo 4.

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

F23 39

• Reading input 210322103221032 from initial state AAA:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

A 21032

F23 40

• Reads remaining string 103210321032:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

C 1032

F23 41

• Reads remaining string 032032032:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

D 032

F23 42

• Reads remainder 323232:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

D 32

F23 43

• Reads remainder 222:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

C 2

F23 44

• Reads remainder εεε (empty string):

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

A ε

• Ends reading. AAA not an accept-state, 210322103221032 not accepted.

F23 45

Additional examples

a

b a,b

10

0 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 10 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 10 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 1

0 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 00 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 00 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 0

What is the language recognized?

F23 46

Three letter example

c

a,b a,b,c

10

0 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 10 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 10 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 1

0 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 10 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 10 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 1

What are the language accepted?

F23 47

An automaton with a sink

10 b

a
b

X

a

a,b

0 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 10 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 10 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 1

0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X
Note: Every state has exactly one arrow for every σ ∈ Σσ ∈ Σσ ∈ Σ.

• A sink is a non-accepting state with

all outgoing transitions pointing to itself.

F23 48

Example

Here is a trivial automaton with a single state:

L

a,b

What strings are accepted?

F23 49

Example

O

b,c

a
L 0a

b,c

a

a,b,c

accepts the strings with exactly one aaa , and no other.

F23 50

Example

 b ε

O

a a b

b a,b
b a

aab ab

a,b

accepts the string aabaabaab and no other.

F23 51

CONSTRUCTING AUTOMATA

From a language to arecognizing automaton

• We give a method that, given a language LLL ,

attempts to construct a DFA MMM recognizing LLL .

• If and when the process teminates, we obtain such an MMM .

• We start with a couple of non-trivial examples,

before articulating the method and giving more examples.

F23 53

Example: aaa’s precede bbb’s

a

b

b

a*bb* b*

a

a,bO/

• Construct an automaton recognizing L(a∗
bb

∗)L(a∗
bb

∗)L(a∗
bb

∗). That is,

accepting strings of aaa ’s followed by one or more bbb ’s,

and only those.

• The initial state is the declaration of this goal.

• What will be an updated goal after reading an aaa?

Reading an aaa

a

b

b

a*bb* b*

a

a,bO/

• The goal is unchanged!.

• But what happens if we read a bbb?

Reading a bbb

a

b

b

a*bb* b*

a

a,bO/

• A new goal: from now on only bbb ’s, any number.

• What if we read a bbb now?

Reading another bbb

a

b

b

a*bb* b*

a

a,bO/

• No change.

• And what if, instead, we read an aaa ?

Reading an aaa instead

O/

a

b

b

a*bb* b*

a

a,b

• This is a non-accept, now and forever. I.e. a sink .

• And which are the accepting states?

What are the accepting states

O/

a

b

b

b*

a

a,b

a*bb*

• Accept if current goal is satisfied when

nothing left to read,

i.e. when the current string is εεε.

• This completes the construction.

F23 54

Example: Ending as it starts

Reading the first letter

w σσ0
1

2

3

*

4

ε
a

b

0

4

3

b

ab

a

b

b

a

a
w a

w b

ε

w a

w bε

• Construct an automaton accepting strings σwσσwσσwσ,

i.e. with last letter identical to the first, and no others.

• The initial state is the declaration of this goal.

• What will be the updated goals after reading the first letter?

Example: Ending as it starts

Reading the first letter:

w σσ

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a
w a

w b

• Either this is the last letter, or else it repeats at the end.

• What if we now read this letter again?

Example: Ending as it starts

Sought letter repeated:

w σσ

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a
w a

w b

ε

• The goal does not change.

• And what about the opposite letter now?

Example: Ending as it starts

Reading opposite letter:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• The option of not reading further has been blocked.

Example: Ending as it starts

Opposite letter repeating:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• But if the sought letter is read now,

the previous goal is restored.

• And if we keep reading the wrong letter?

Example: Ending as it starts

Return to sought letter:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• No change of goal.

• What are the accepting states?

Example: Ending as it starts

The accepting states:

w σσ

w a

w b

w a

w b

a

b

0

2 4

31

b

ab

a

b

b

a

a

0
1

2

3

*

4

ε

ε

• Accept if current goal is satisfied when nothing left to read.

• This completes the construction.

F23 55

Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

• Programming is a goal oriented process.

The relevant mission is to achieve a goal.

The initial task of an acceptor for LLL is

“accept the strings in LLL and no others”!

Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

• Programming is a goal oriented process.

The relevant mission is to achieve a goal.

The initial task of an acceptor for LLL is

“accept the strings in LLL and no others”!

• The tasks are adjusted as the input string is read.

Each task is of the form

the string ahead leads into a string in LLL

F23 56

Identifying accepting tasks

• The development above updates states (conditions)

as required when symbols σσσ are read.

• A string x = σux = σux = σu satisfying the current condition (=state) leads to AAA
iff uuu started at the next condition leads to AAA.

• So the accepting conditions are the ones that are satisfied

when reading ends, i.e. when the string-ahead is εεε.

F23 57

Example: Repeated last symbol

σσw
a

b

a b0

0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

ε a σσw

a σσw

state dictionary

Example: Repeated last symbol

σσw

σσwaa

b

a b0

1 0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

ε a σσw

Example: Repeated last symbol

σσw

σσwa

ε a σσw

a

b

a b0

1 0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

F23 58

Example: Recognizing odd length

#a odd

b

a

a
b

#a even

◮ Initial task: accept strings with an odd number of aaa’s

Example: Recognizing odd length

#a odd

b

a

a
b

#a even

◮ Reading a bbb does not change the task

Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Reading an aaa revises the task to:

accept strings with an even number of aaa’s

Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Same reasoning for the “even” task

Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Accept description fulfilled by εεε.

F23 59

Example: aba∗aba∗aba∗

a*
a

L ba*

a

b

O

a

a,b

b b

Accepts the strings of the form aba
n

aba
n

aba
n with n > 0n > 0n > 0,

and no others.

Example: aba∗aba∗aba∗

a*
a

L ba*

a

b

O

a

a,b

b b

Accepts the strings of the form aba
n

aba
n

aba
n with n > 0n > 0n > 0,

and no others.

• Note the sink at the bottom of the diagram.

F23 60

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

a*
b

a

/

◮ Initial task: accept strings of aaa’s

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

a*
b

a

/

◮ Reading an aaa does not change the task

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

/a*
b

a a,b

◮ Reading a bbb revises the task to

not accepting anything. A sink.

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

/

a,b

a*

a

b

◮ No escape from the sink

F23 61

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a # a # a
i j k

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

a
k

k = 0
/a # a

j k

j = k
/

a # a # a
i j k

i + j = k
/

a
k

a # a
j k

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a # a # a
i j k

a # a # a
i j k

i + j = k/

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

a
k

k = 0
/a # a

j k

j = k
/

a # a
j k a

k

Reading aaa’s toggles between equlity and inequality of parities.

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a # a # a
i j k

a # a # a
i j k

a # a
j k

i + j = k/

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

a
k

k = 0
/a # a

j k

j = k
/

a
k

Reading the separator ### means i = 0i = 0i = 0.

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a # a # a
i j k

a # a # a
i j k

a # a
j k

a # a
j k

a
k

a
k

j = k k = 0i + j = k/ / /

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

The same arguments are repeated

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a # a # a
i j k

a # a # a
i j k

a # a
j k

a # a
j k

a
k

a
k

/

j = k k = 0i + j = k/ / /

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

Encountering an extra separator leads to a sink

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a # a # a
i j k

a # a # a
i j k

a # a
j k

a # a
j k

a
k

a
k

/

j = k k = 0i + j = k/ / /

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

The single one accepting state is the one satisfied by εεε.

Summary of the method

• The initial acceptance-condition is

the language to be recognized.

Summary of the method

• The initial acceptance-condition is

the language to be recognized.

• Given a new acceptance-condition, each each σ ∈ Σσ ∈ Σσ ∈ Σ
find what condition is required after reading σσσ .

Summary of the method

• The initial acceptance-condition is

the language to be recognized.

• Given a new acceptance-condition, each each σ ∈ Σσ ∈ Σσ ∈ Σ
find what condition is required after reading σσσ .

• That is, a string σuσuσu satisfies the current condition iff

uuu satisfies the condition after σσσ is read.

Summary of the method

• The initial acceptance-condition is

the language to be recognized.

• Given a new acceptance-condition, each each σ ∈ Σσ ∈ Σσ ∈ Σ
find what condition is required after reading σσσ .

• That is, a string σuσuσu satisfies the current condition iff

uuu satisfies the condition after σσσ is read.

• A condition is an accepting state iff it is satisfied by εεε.

F23 63

Example: Two consecutive aaa’s

Construct an automaton recognizing L(Σ∗ · aa · Σ∗)L(Σ∗ · aa · Σ∗)L(Σ∗ · aa · Σ∗)

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

Reading bbb leaves the task unchanged:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

But reading aaa opens two future options:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

From these two options reading bbb kills the first:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

But reading an aaa settles acceptance:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

No further reading alterns that conclusion:

accept!
2 consec a’s
or starts w/ a

a

b

b

a

a,b

2 consecutive a’s

F23 64

Example 7: a∗
b

∗
c

∗
a

∗
b

∗
c

∗
a

∗
b

∗
c

∗

0/

a*b*c* b*c* c*

a

b c

c
a b

c

a,b

• Label states as we wish, with optional “dictionary.”

a
a,b

b c

c
a b

c

2 31

0

F23 65

Example: Initial aaa or the string baabaabaa

Σ∗

{aa}

{a}

/

b

a

b

a a

σ
b

σ

o

L

{ε}

F23 67

Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

• This table does not look like a string.

But all such tables have height 3 we can consider each column as a “symbol” in the alphabet

Σ = {0, 1}3Σ = {0, 1}3Σ = {0, 1}3
, that is

Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}

Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

• This table does not look like a string.

But all such tables have height 3 we can consider each column as a “symbol” in the alphabet

Σ = {0, 1}3Σ = {0, 1}3Σ = {0, 1}3
, that is

Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}

• The long addition above can be consrued as the string













0

0

1

























0

1

0

























1

1

0

























1

0

1

























0

1

1

























0

0

1

























0

1

0

























1

1

0

























1

0

1

























0

1

1

























0

0

1

























0

1

0

























1

1

0

























1

0

1

























0

1

1













An automaton recognizing symbolic binary addition

• Is there an automaton over Σ3Σ3Σ3
that recognizes

the correct symbolic binary additions?

• Construct an automaton MMM that accepts strings like



















0

0

1





































1

1

1





































1

1

1





































1

1

0





































0

0

1





































1

1

1





































1

1

1





































1

1

0





































0

0

1





































1

1

1





































1

1

1





































1

1

0



















but not strings like



















0

1

1





































1

1

1





































1

1

0





































1

0

0





































0

1

1





































1

1

1





































1

1

0





































1

0

0





































0

1

1





































1

1

1





































1

1

0





































1

0

0



















F23 69

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

Start state is the goal that the table adds-up:

remaining columns add up

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

Start state is the goal that the table adds-up:

remaining columns add up

The main other state is remaining columns yield carry-over

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

There is one column switching from add-up to carry-over

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

There is one column switching from add-up to carry-over

and one column switching back from carry-over to add-up

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

Three columns leave the add-up goal unchanged

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

Three columns leave the add-up goal unchanged

and three leaave carry-over unchaged

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

Four columns lead from add-up to a sink

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 0 0 1
0 0 1 0
0, 1, 1, 1

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

1 1 1 0
1 1 0 1
1, 0, 0, 0

σ

SINK

add up carry over

Four columns lead from add-up to a sink

and four from carry-over to that sink

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 0 0 1
0 0 1 0
0, 1, 1, 1

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

1 1 1 0
1 1 0 1
1, 0, 0, 0

σ

SINK

add up carry over

Finally, sink is a sink.

F23 70

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• The numerals divisible by 2 are those that end with 000.

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

We have that 4k =3 14k =3 14k =3 1 , by induction on k.

◮ 40 = 140 = 140 = 1

◮ If 4k = 3x + 14k = 3x + 14k = 3x + 1 then 4k+1 = 4(3x + 1) = 13x + 1.4k+1 = 4(3x + 1) = 13x + 1.4k+1 = 4(3x + 1) = 13x + 1.

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

We have that 4k =3 14k =3 14k =3 1 , by induction on k.

So 22k = 3x + 122k = 3x + 122k = 3x + 1 for some xxx , and 22k+1 = 2(3x + 1) = 6x + 222k+1 = 2(3x + 1) = 6x + 222k+1 = 2(3x + 1) = 6x + 2 .

∴ 2n =3 12n =3 12n =3 1 for even nnn , and =3 2=3 2=3 2 for odd nnn .

F23 71

Example: Binary numerals divisible by 3

• For any input www the expectation depends on the parity of |w||w||w| , the goals are

therefore of the form

Either |w||w||w| is even and [w] =3 x[w] =3 x[w] =3 x or |w||w||w| is odd and [w] =3 y[w] =3 y[w] =3 y

Let’s abbreviate this as (x, y)(x, y)(x, y) .

Example: Binary numerals divisible by 3

• For any input www the expectation depends on the parity of |w||w||w| , the goals are

therefore of the form

Either |w||w||w| is even and [w] =3 x[w] =3 x[w] =3 x or |w||w||w| is odd and [w] =3 y[w] =3 y[w] =3 y

Let’s abbreviate this as (x, y)(x, y)(x, y) .

• From the observation above it follows that (x, y) 1→ (y+2, x+1)(x, y) 1→ (y+2, x+1)(x, y) 1→ (y+2, x+1), and

(x, y) 0→ (y, x).(x, y) 0→ (y, x).(x, y) 0→ (y, x).

F23 72

• This yields the following DFA:

0

0

1

1

(0,0)

0 1

(1,2)(2,1)

1

1

0

0

0

1

Condensed:

|w| odd, [w]=2|w| odd, [w]=0

|w| even, [w]=0

or

|w| even, [w]=2

|w| odd, [w]=1

|w| even, [w]=1

or or

F23 73

RESIDUES AND THEIR APPLICATIONS

More examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since invent is a word.

• The residue L/adL/adL/ad contains the strings vance, apt, opt, d,vance, apt, opt, d,vance, apt, opt, d, and ǫǫǫǫǫǫǫǫǫ.

• Take L = {ab}L = {ab}L = {ab}, a singleton language.

We have L/ε = {ab}L/ε = {ab}L/ε = {ab}, L/a = {b}L/a = {b}L/a = {b} , and L/ab = εL/ab = εL/ab = ε.

For any other string www , L/w = ∅L/w = ∅L/w = ∅.

• For any language LLL we have L/ε = LL/ε = LL/ε = L:

w ∈ Lw ∈ Lw ∈ L iff ε ∈ L/wε ∈ L/wε ∈ L/w.

F23 75

More examples yet

• L = {0, 00, 010}L = {0, 00, 010}L = {0, 00, 010}

L/εL/εL/ε = L

L/0L/0L/0 = {ε, 0, 10}{ε, 0, 10}{ε, 0, 10}

L/00L/00L/00 = {ε}{ε}{ε}

L/01L/01L/01 = {0}{0}{0}

L/010L/010L/010 = {ε}{ε}{ε}

L/wL/wL/w = ∅∅∅for any otherwww

L/00 = L/010L/00 = L/010L/00 = L/010, so there are five (different) residues.

F23 76

An example with language union

• L = {aw | w ∈ Σ∗} ∪ {baa}L = {aw | w ∈ Σ∗} ∪ {baa}L = {aw | w ∈ Σ∗} ∪ {baa}.

L/εL/εL/ε = LLL

L/wL/wL/w = Σ∗Σ∗Σ∗ if www starts with aaa

L/bL/bL/b = {aa}{aa}{aa}

L/baL/baL/ba = {a}{a}{a}

L/baaL/baaL/baa = {ε}{ε}{ε}

L/wL/wL/w = ∅∅∅ for any other www

There are 6 residues.

LLL and Σ∗Σ∗Σ∗
are infinite languages, the others are finite.

F23 77

A single-letter language

• Σ = {0, 1}Σ = {0, 1}Σ = {0, 1} , L = {0}∗L = {0}∗L = {0}∗.

• If w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
contains 111 then L/w = ∅L/w = ∅L/w = ∅.

Otherwise L/w = LL/w = LL/w = L.

There are two residues.

F23 78

A language based on occurrence count

• L = {w ∈ {0, 1} | #0(w) is even }L = {w ∈ {0, 1} | #0(w) is even }L = {w ∈ {0, 1} | #0(w) is even }.

If #0(w)#0(w)#0(w) is even then L/wL/wL/w is LLL,

otherwise L/w = {w | #0(w)L/w = {w | #0(w)L/w = {w | #0(w) is odd }}}

F23 79

Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x

1

2

0

q

a

Lq

Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x

1

2

0

q

a

Lq

• Denote the set of all such xxx ’s by LqLqLq.

In particular, Ls = LLs = LLs = L .
x

x

w
x

1

2

0

q

a

a’

Lq

Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x

1

2

0

q

a

Lq

• Denote the set of all such xxx ’s by LqLqLq.

In particular, Ls = LLs = LLs = L .
x

x

w
x

1

2

0

q

a

a’

Lq

• Note: We focus on the future of qqq , not its past!

(The past would be the set of strings leading to qqq)

States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.

States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.

• xxx completes www to a string in LLL :
x

x

w
x

1

2

0

qs

a

a’

Lq

States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.

• xxx completes www to a string in LLL :
x

x

w
x

1

2

0

qs

a

a’

Lq
• LqLqLq is L/w =L/w =L/w = the residue of LLL over www:

x

x

w
x

1

2

0

qs

a

a’

L w

A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.

A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.

• Proof. If s u→ qs u→ qs u→ q and s v→ qs v→ qs v→ q then L/u = L/vL/u = L/vL/u = L/v .

A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.

• Proof. If s u→ qs u→ qs u→ q and s v→ qs v→ qs v→ q then L/u = L/vL/u = L/vL/u = L/v .

• Consequently:

Theorem.

A language with infinitely many residues is not recognized.

F23 82

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

• For each nnn we have

L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n} ,

since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

• For each nnn we have

L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n} ,

since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.

• If i 6= ji 6= ji 6= j then 0i ∈ L/1i0i ∈ L/1i0i ∈ L/1i but 6∈ L/1j6∈ L/1j6∈ L/1j

so the two residues are different .

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

• For each nnn we have

L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n} ,

since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.

• If i 6= ji 6= ji 6= j then 0i ∈ L/1i0i ∈ L/1i0i ∈ L/1i but 6∈ L/1j6∈ L/1j6∈ L/1j

so the two residues are different .

∴∴∴ LLL is not recognized, since it has infinitely many residues.

F23 83

States and residues

• We developed automata by thinking of residues as states.

• Let MMM be an automaton over ΣΣΣ .

For a state qqq of MMM define

Lq =df {x ∈ Σ∗ | q x→ A }Lq =df {x ∈ Σ∗ | q x→ A }Lq =df {x ∈ Σ∗ | q x→ A }

• In particular, for the start state Ls = LLs = LLs = L.

• If s w→ qs w→ qs w→ q then Lq = L/wLq = L/wLq = L/w.

Lq

s q

w x1

x2

= L / w

⋆ Each string leads from sss to some state.

⋆ All strings leading from sss to a state qqq have the same residue.

F23 84

The Myhill-Nerode Theorem

Lq

s q

w x1

x2

= L / w

• Every residue L/wL/wL/w is LqLqLq for qqq as above.

• And two different residues L/w 6= L/xL/w 6= L/xL/w 6= L/x must correspond

to two different states.

• So we have an injection that maps residues to states,

I.e. the number of residues is bounded by the number of states.

• Theorem. (John Myhill and Anil Nerode (1958)) (simplified and rephrased):

L(M)L(M)L(M) cannot have more residues than MMM has states.

• Consequence: A language with infinitely many residues

cannot be recognized by any automaton!

Showing that a language fails recognition

• We saw that L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)} has infinitely many

residues.

• Consequence: It cannot be recognized by any automaton!!!

• General method: show that LLL is not recognized

by showing that there are infinitely many residues.

• We do not need to consider all residues,

only some infinite selection, defined by a template

• We do not need to calculate the residues we choose,

only show that each two of them are different .

• We show them different by exhibiting a string which is in one

but not in the other.

F23 86

Example: Unary addition

• Representing unary addition, using unary numerals

and the symbols for addition and equality:

• L = {1k + 1m = 1k+m | k, m > 1}L = {1k + 1m = 1k+m | k, m > 1}L = {1k + 1m = 1k+m | k, m > 1}

• What residues would you select?

F23 87

• L/ 1n + 1 =L/ 1n + 1 =L/ 1n + 1 = for each n > 1n > 1n > 1.

• Suppose i 6= ji 6= ji 6= j.

What string is in L/ 1i + 1 =L/ 1i + 1 =L/ 1i + 1 = but not in L/ 1j + 1 =L/ 1j + 1 =L/ 1j + 1 = ?

F23 88

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

• Then 0i1 ∈ L/0i10i1 ∈ L/0i10i1 ∈ L/0i1,

but for j > ij > ij > i we have 0i1 6∈ L/0j10i1 6∈ L/0j10i1 6∈ L/0j1 ,

because it has two 111’s in its first half and none in the second.

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

• Then 0i1 ∈ L/0i10i1 ∈ L/0i10i1 ∈ L/0i1,

but for j > ij > ij > i we have 0i1 6∈ L/0j10i1 6∈ L/0j10i1 6∈ L/0j1 ,

because it has two 111’s in its first half and none in the second.

• Since each two of these residues are different,

LLL has infinitely many residues,

and cannot be recognized by a DFA.

F23 89

Example: Residues for perfect squares

• L = {1n2
| n > 0}L = {1n2
| n > 0}L = {1n2
| n > 0}.

• Consider the residues L/1n2
L/1n2
L/1n2

for each n > 0n > 0n > 0.

• The first perfect square following n2n2n2 is (n+1)2 = n2 + 2n + 1(n+1)2 = n2 + 2n + 1(n+1)2 = n2 + 2n + 1.

• So the shortest non-null string of L/1i2L/1i2L/1i2 is 12i+112i+112i+1.

• It follows that 12i+1 ∈ L/1i212i+1 ∈ L/1i212i+1 ∈ L/1i2

but 12i+1 6∈ L/1j2
12i+1 6∈ L/1j2
12i+1 6∈ L/1j2

for any j > ij > ij > i.

• Since every two of these residues are different,

LLL has infinitely many residues,

and cannot be recognized by any automaton.

F23 90

Building automata directly from residues

• We showed that every recognized language has finitely many residues.

• The converse is also true:

• If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
has finitely many residues, then L = L(M)L = L(M)L = L(M) where:

⋆ The states of MMM are the residues.

⋆ The initial state is L/ε = LL/ε = LL/ε = L .

⋆ A state L/wL/wL/w is accepting iff it contains εεε.

⋆ The transitions are given by L/w σ→ L/wσL/w σ→ L/wσL/w σ→ L/wσ .

• We used the same idea to construct automata, except that here

we assume that the residues are given to us.

• We write Res(L)Res(L)Res(L) for the automaton constructed from residues.

F23 91

Recognized = finitely many residues

• A language LLL is recognized iff it has finitely many residues.

• The DFA constructed from LLL’s residues

has the fewer states

• Given a DFA MMM recognizing LLL , and a state qqq,

F23 92

AUTOMATA ARE REPETITIVE

2

2

2

2

11

1 1

1 1 1 22 1

• Here’s an automaton that accepts a string w ∈ {1, 2}∗w ∈ {1, 2}∗w ∈ {1, 2}∗

iff the sum of the digits in www is 2 mod (4)2 mod (4)2 mod (4).

2

2

2

2

11

1 1

1 1 1 12 1

• This is its trace for input 111212111212111212.

The input has 6 symbols, so the trace lists 7 states.

2

2

2

2

11

1 1

1 1 1 12 1

• Looking at the first 5 of the 7, we must have a state repeating,

because there are only 4 states.

2

2

2

2

11

1 1

1 1 1 12 1

The same happens for the next stretch of 5 states (i.e. 4 input symbols)

2

2

2

2

11

1 1

1 1 1 12 1

And the next one.

No matter which window of 5 states we take there will be a state repeating!

2

2

2

2

11

1 1

1 1 1 12 1

We can short-cut the steps from the yellow state to itself,

and the result will still be a legit trace, but for 112112112.

2

2

2

2

11

1 1

1 1 1 1 21

We can short-cut the steps from the yellow state to itself,

and the result will still be a legit trace, but for 112112112.

F23 94

The Shortcut Theorem

• Theorem. Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′
→ pq u′
→ pq u′
→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.

The Shortcut Theorem

• Theorem. Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′
→ pq u′
→ pq u′
→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.

• Suppose we have s
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ A with |u| > k|u| > k|u| > k .

The Shortcut Theorem

• Theorem. Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′
→ pq u′
→ pq u′
→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.

• Suppose we have s
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ A with |u| > k|u| > k|u| > k .

Then s
w0→ p u′

→ q
w1→ As

w0→ p u′
→ q

w1→ As
w0→ p u′

→ q
w1→ A

F23 95

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

• That is, if MMM accepts w0 · u · w1w0 · u · w1w0 · u · w1, where |u| > k|u| > k|u| > k ,

then there is a split u = x · y · zu = x · y · zu = x · y · z , with y 6= εy 6= εy 6= ε ,

such that w′ = w0 · x · z · w1w′ = w0 · x · z · w1w′ = w0 · x · z · w1 is also accepted.

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

• That is, if MMM accepts w0 · u · w1w0 · u · w1w0 · u · w1, where |u| > k|u| > k|u| > k ,

then there is a split u = x · y · zu = x · y · zu = x · y · z , with y 6= εy 6= εy 6= ε ,

such that w′ = w0 · x · z · w1w′ = w0 · x · z · w1w′ = w0 · x · z · w1 is also accepted.

• We call uuu the critical substring,

the occurrence of yyy the clipped substring,

and w′w′w′ the reduced string.

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

• We call uuu the critical substring,

the occurrence of yyy the clipped substring,

and w′w′w′ the reduced string.

u
y

w

w0 w1zx

Clipping step by step

as

w

Clipping step by step

a

u

s q p

Clipping step by step

w0 w1

a

u

s q p

Clipping step by step

w0 w1

a

y

s q pr r

Clipping step by step

w0 w1

a

y

s q pr r

x z

Clipping step by step

w0 w1

as q pr r

x z

Clipping step by step

w0 w1

s q r

x

ap

z

F23 97

An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

1. ℓ ∈ [30..100]ℓ ∈ [30..100]ℓ ∈ [30..100]

2. ℓ ∈ [10..25]ℓ ∈ [10..25]ℓ ∈ [10..25]

3. ℓ ∈ [0..9]ℓ ∈ [0..9]ℓ ∈ [0..9]

4. Can’t tell, could be anything.

An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

• Theorem. If a kkk-state automaton MMM accepts some string, then it accepts a

string of length < k< k< k.

An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

• Theorem. If a kkk-state automaton MMM accepts some string, then it accepts a

string of length < k< k< k.

• Proof: Let www be a shortest string accepted by MMM .

If |w| > k|w| > k|w| > k then we invoke the Clipping Theorem,

with www itself for uuu,

and obtain a w′ ∈ Lw′ ∈ Lw′ ∈ L shorter than www.

This contradicts the assumed minimality of |w||w||w|.

On not being an insect

• How do you tell that the critter on your desk

is not an insect?

On not being an insect

• How do you tell that the critter on your desk

is not an insect?

• Check that it violates some property of insects,

e.g. it has eight rather than six legs.

• How do you tell that a given language LLL
is not recognized by any automaton?

• Refer to a property that all recognized languages have,

but LLL does not.

On not being an insect

• How do you tell that the critter on your desk

is not an insect?

• Check that it violates some property of insects,

e.g. it has eight rather than six legs.

• How do you tell that a given language LLL
is not recognized by any automaton?

• Refer to a property that all recognized languages have,

but LLL does not.

F23 99

The Clipping Property

• The Clipping Theorem:

Every recogized LLL has this Clipping Property:

The Clipping Property

• The Clipping Theorem:

Every recogized LLL has this Clipping Property:

◮ There is a kkk (# of states of an acceptor for LLL),

◮ so that for every w ∈ Lw ∈ Lw ∈ L and substring uuu of length > k> k> k ,

◮ uuu has a “clippable” substring y 6= εy 6= εy 6= ε:

removing yyy from www yields a string in LLL .

The Clipping Property

• The Clipping Theorem:

Every recogized LLL has this Clipping Property:

◮ There is a kkk (# of states of an acceptor for LLL),

◮ so that for every w ∈ Lw ∈ Lw ∈ L and substring uuu of length > k> k> k ,

◮ uuu has a “clippable” substring y 6= εy 6= εy 6= ε:

removing yyy from www yields a string in LLL .

• A language fails Clipping when

◮ for any k > 0k > 0k > 0

◮ we can choose w ∈ Lw ∈ Lw ∈ L and substring uuu of length > k> k> k ,

◮ so that any clipping off uuu yields w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

Example: an-bn

• Let L = {an
b

n | n > 0}L = {an
b

n | n > 0}L = {an
b

n | n > 0}

• LLL fails clipping:

1. Let k > 0k > 0k > 0

2. Choose w = a
k
b

kw = a
k
b

kw = a
k
b

k and u = a
ku = a
ku = a
k.

We have w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipping in uuu yields from www
a w′w′w′ of the form a

p
b

k
a

p
b

k
a

p
b

k with p < kp < kp < k.

So w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• Consequence: LLL fails the Clipping Property and cannot be recognized.

F23 101

Example: Unary addition

• Consider the strings representing addition in unary:

A = {1p +++ 1q === 1p+q | p, q > 0}A = {1p +++ 1q === 1p+q | p, q > 0}A = {1p +++ 1q === 1p+q | p, q > 0}.

• AAA fails the Clipping Property:

1. Let k > 0k > 0k > 0.

2. Choose w = 1k +++ 1 === 1k+1w = 1k +++ 1 === 1k+1w = 1k +++ 1 === 1k+1

and uuu the substring 1k+11k+11k+1.

w ∈ Aw ∈ Aw ∈ A and |u| > k|u| > k|u| > k.

3. Any clipping in uuu yields from www a string

w′ = 1ℓ +++ 1 = 1k+1w′ = 1ℓ +++ 1 = 1k+1w′ = 1ℓ +++ 1 = 1k+1 with ℓ < kℓ < kℓ < k.

w′ 6∈ Aw′ 6∈ Aw′ 6∈ A .

• AAA fails Clipping, and so cannot be recognized.

F23 102

Example: Perfect squares in unary

• Consider L = {1n2
| n > 0}L = {1n2
| n > 0}L = {1n2
| n > 0}.

• LLL fails the Clipping Property:

1. Let k > 0k > 0k > 0.

2. Choose w = 1k2
w = 1k2
w = 1k2

and u = 1ku = 1ku = 1k.

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. For any clipped yyy we have 1 6 |y| 6 |u| = k1 6 |y| 6 |u| = k1 6 |y| 6 |u| = k ,

so for the reduced string w′ = 1ℓw′ = 1ℓw′ = 1ℓ where k2 − k 6 ℓ < k2k2 − k 6 ℓ < k2k2 − k 6 ℓ < k2.

w′ 6∈ Lw′ 6∈ Lw′ 6∈ L because ℓℓℓ cannot be a square: the largest square preceding

k2k2k2 is (k−1)2 = k2 − 2k + 1(k−1)2 = k2 − 2k + 1(k−1)2 = k2 − 2k + 1 which is < k2 − k 6 ℓ< k2 − k 6 ℓ< k2 − k 6 ℓ.

• So LLL fails Clipping, and cannot be recognized.

F23 103

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}

• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}

• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

1. Let k > 0k > 0k > 0.

2. Choose w = 01k01kw = 01k01kw = 01k01k and u =u =u = left substring 1k1k1k in www .

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}

• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

1. Let k > 0k > 0k > 0.

2. Choose w = 01k01kw = 01k01kw = 01k01k and u =u =u = left substring 1k1k1k in www .

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipped yyy in uuu yields from www
a reduced string w′ = 01ℓ01kw′ = 01ℓ01kw′ = 01ℓ01k

where ℓ < kℓ < kℓ < k.

Such w′w′w′ cannot be of the form xxxxxx,

because its first half starts with 000

while its second half starts with 111.

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}

• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

1. Let k > 0k > 0k > 0.

2. Choose w = 01k01kw = 01k01kw = 01k01k and u =u =u = left substring 1k1k1k in www .

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipped yyy in uuu yields from www
a reduced string w′ = 01ℓ01kw′ = 01ℓ01kw′ = 01ℓ01k

where ℓ < kℓ < kℓ < k.

Such w′w′w′ cannot be of the form xxxxxx,

because its first half starts with 000

while its second half starts with 111.

• LLL fails the Clipping Property, and cannot be recognized.

F23 104

Pumping up rather than clipping

q0 = qm
x

y

z
qjqi

qjq0
x

qi q = qj i

y y

qm
z

qj

... 731 times ...
q0

x
qi q = qj i

yy

q = qj i

y y

qj qm
z

F23 105

Pumping step-by-step

as

w

Pumping step-by-step

a

u

s q p

Pumping step-by-step

w0 w1

a

u

s q p

Pumping step-by-step

w0 w1

a

y

s q pr r

Pumping step-by-step

w0 w1

a

y

s q pr r

x z

Pumping step-by-step

w0 w1

as q pr r

x z

Pumping step-by-step

w0 w1

s q r

x

ap

z

Pumping step-by-step

w0

r

y w1

s q

x

ap

z

rr

y

Pumping step-by-step

w0 w1

s q

x

ap

z

rr

y

r

y

r

y

Pumping step-by-step

w0

r

y w1

s q r

yx

ap

z

rr

y

F23 106

Pumping instances

• Let w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
and

yyy a particular substring of www : w = x · y · zw = x · y · zw = x · y · z.

• The nnn-th pumping instance of w = x · y · zw = x · y · zw = x · y · z
over (the exhibited occurrence of) yyy
is defined to be x · yn · zx · yn · zx · yn · z.

F23 107

The Pumping Theorem

• Let MMM be a kkk-state DFA over ΣΣΣ, L = L(M)L = L(M)L = L(M).

• As for Clipping, choose w ∈ Lw ∈ Lw ∈ L and a substring uuu of www of length > k> k> k.

• CONCLUDE: uuu has a non-empty substring yyy
such that all pumping instances of www over yyy are in LLL.

• Recall: The nnn-th pumping instance of www over

(a particular occurrence of) yyy
is the result of replacing yyy by ynynyn.

F23 108

Failing Pumping

A language fails Pumping when:

1. For any k > 0k > 0k > 0

2. there are w ∈ Lw ∈ Lw ∈ L
and substring uuu of www of length > k> k> k

3. so that for every yyy within uuu
there is a pumping instance www over yyy which is not in LLL.

F23 109

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }

• Suppose LLL is recognized by a kkk-state DFA MMM .

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }

• Suppose LLL is recognized by a kkk-state DFA MMM .

• Take a prime p > kp > kp > k and w = 1p ∈ Lw = 1p ∈ Lw = 1p ∈ L.

• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }

• Suppose LLL is recognized by a kkk-state DFA MMM .

• Take a prime p > kp > kp > k and w = 1p ∈ Lw = 1p ∈ Lw = 1p ∈ L.

• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.

• The (p+1)(p+1)(p+1)-st pumping instance of www over yyy
has length |w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1),
which is not prime.

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }

• Suppose LLL is recognized by a kkk-state DFA MMM .

• Take a prime p > kp > kp > k and w = 1p ∈ Lw = 1p ∈ Lw = 1p ∈ L.

• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.

• The (p+1)(p+1)(p+1)-st pumping instance of www over yyy
has length |w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1),
which is not prime.

• Contradiction. MMM cannot exist.

F23 110

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

• Suppose LLL were recognized by a kkk-state DFA.

Let w = b
k
a

kw = b
k
a

kw = b
k
a

k, which is in LLL,

and take u = b
ku = b
ku = b
k , the prefix of www.

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

• Suppose LLL were recognized by a kkk-state DFA.

Let w = b
k
a

kw = b
k
a

kw = b
k
a

k, which is in LLL,

and take u = b
ku = b
ku = b
k , the prefix of www.

• By the Pumping Theorem uuu has a substring y = b
ℓy = b
ℓy = b
ℓ where ℓ > 0ℓ > 0ℓ > 0 such

that b
k+nℓ

a
k ∈ Lb

k+nℓ
a

k ∈ Lb
k+nℓ

a
k ∈ L for all n > 0n > 0n > 0. In particular, for n = 1n = 1n = 1 we have

w′ = b
k+ℓ

a
k ∈ Lw′ = b

k+ℓ
a

k ∈ Lw′ = b
k+ℓ

a
k ∈ L .

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

• Suppose LLL were recognized by a kkk-state DFA.

Let w = b
k
a

kw = b
k
a

kw = b
k
a

k, which is in LLL,

and take u = b
ku = b
ku = b
k , the prefix of www.

• By the Pumping Theorem uuu has a substring y = b
ℓy = b
ℓy = b
ℓ where ℓ > 0ℓ > 0ℓ > 0 such

that b
k+nℓ

a
k ∈ Lb

k+nℓ
a

k ∈ Lb
k+nℓ

a
k ∈ L for all n > 0n > 0n > 0. In particular, for n = 1n = 1n = 1 we have

w′ = b
k+ℓ

a
k ∈ Lw′ = b

k+ℓ
a

k ∈ Lw′ = b
k+ℓ

a
k ∈ L .

But this is impossible, because the second half of this w′w′w′

has bbb ’s, so w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• Thus no DFA recgnizes LLL .

F23 111

Minimum states for finite language recognition

• Any finite language LLL is recognized by an automaton!

• But how many states are needed?

Minimum states for finite language recognition

• Any finite language LLL is recognized by an automaton!

• But how many states are needed?

• At least as many as the longest string-length in LLL.

Minimum states for finite language recognition

• Any finite language LLL is recognized by an automaton!

• But how many states are needed?

• At least as many as the longest string-length in LLL.

• Proof: If MMM with kkk states recognizes a string longer than kkk,

then Pumping applies, and LLL is infinite!

F23 112

MODIFYING & COMBINING AUTOMATA

F23 113

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

• A partial-automaton MMM terminates execution

when it cannot proceed: no applicable transition (due to partiality)

or no next-letter to move to.

It accepts www if its state-trace for www ends with an accepting state.

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

• A partial-automaton MMM terminates execution

when it cannot proceed: no applicable transition (due to partiality)

or no next-letter to move to.

It accepts www if its state-trace for www ends with an accepting state.

• Example: A partial automaton recognizing {ab, ba}{ab, ba}{ab, ba} :

3

a

b

0

1

2

a

b

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

• A partial-automaton MMM terminates execution

when it cannot proceed: no applicable transition (due to partiality)

or no next-letter to move to.

It accepts www if its state-trace for www ends with an accepting state.

• Example: A partial automaton recognizing {ab, ba}{ab, ba}{ab, ba} :

3

a

b

0

1

2

a

b

• Some people use “automaton” for our “partial-automaton”

and “total-automaton” for our “automaton.”

From partial- to total-automaton

• Theorem. Every partial-automaton MMM can be converted

into a total-automaton M̄̄M̄M equivalent to MMM , i.e. recognizing the same

language.

Do you seee how?

From partial- to total-automaton

• Theorem. Every partial-automaton MMM can be converted

into a total-automaton M̄̄M̄M equivalent to MMM , i.e. recognizing the same

language.

Do you seee how?

• Just add a sink to MMM :

convert 3

a

b

0

1

2

a

b

to 0

b a

ba a

b

a,b

a,b
3

1

K

2

From partial- to total-automaton

• Theorem. Every partial-automaton MMM can be converted

into a total-automaton M̄̄M̄M equivalent to MMM , i.e. recognizing the same

language.

Do you seee how?

• Just add a sink to MMM :

convert 3

a

b

0

1

2

a

b

to 0

b a

ba a

b

a,b

a,b
3

1

K

2

• That is, M̄̄M̄M is obtained by adding to MMM
a sink state KKK , with all missing transitions of MMM
as well as outgoing transition from KKK , pointing to KKK .

Application: Additional languages recognized

• Suppose MMM recognizes {w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.{w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.{w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.

• Then swapping states in MMM yields an automaton recognizing

{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}

F23 116

Application: Showing a language not-recognized

• Show L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)} is not recognized.

ow observe that L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗ .

Application: Showing a language not-recognized

• Show L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)} is not recognized.

• Clipping doesn’t work!

ow observe that L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗ .

Application: Showing a language not-recognized

• Show L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)} is not recognized.

• Clipping doesn’t work!

• Use Clipping to show that

L′ = {w ∈ {a,b}∗ | #a(w) = #b(w)}L′ = {w ∈ {a,b}∗ | #a(w) = #b(w)}L′ = {w ∈ {a,b}∗ | #a(w) = #b(w)}

is not recognized.

ow observe that L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗ .

F23 117

Combining two automata

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

Combining two automata

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

and

• M2M2M2 recognizes L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) } .

b# w = 0 mod 2
b

b

aa

0 1

Combining two automata

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

and

• M2M2M2 recognizes L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) } .

b# w = 0 mod 2
b

b

aa

0 1

This is special parallelism:

the two processors may work in tandem,

because they read the same input one symbol at a time.

Two automata collaborating

0
a

b b

1 2

b

a

a

b

b

aa

10

b b b b b b

a0

0

a

0

1

aa

a

a

1

0

2

0

2

1

1

1

Conjuctive pairing

• Accepting when both accept:

b b b b b b

b

b

aa

10X Y Z

both accept

aX

0

a

X

1

aa

a

a

Y

0

Z

0

Z

1

Y

1

a

b b b

a

a

Disjunctive pairing

• Accepting when at least one automaton accepts:

b b b b b b

X

0

a a

X

1

aa

a

a

Y

0

Z

0

Z

1

Y

1

a

b b b

a

a

X Y Z

b

b

aa

10

at least one accepts

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.

I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.

I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

◮ The transitions are 〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉 where

q σ→ pq σ→ pq σ→ p in MMM and q′ σ→ p′q′ σ→ p′q′ σ→ p′ in M ′M ′M ′.

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.

I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

◮ The transitions are 〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉 where

q σ→ pq σ→ pq σ→ p in MMM and q′ σ→ p′q′ σ→ p′q′ σ→ p′ in M ′M ′M ′.

• In a conjunctive product the set of

accepting states is A × A′A × A′A × A′ (both automata accept).

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.

I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

◮ The transitions are 〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉 where

q σ→ pq σ→ pq σ→ p in MMM and q′ σ→ p′q′ σ→ p′q′ σ→ p′ in M ′M ′M ′.

• In a conjunctive product the set of

accepting states is A × A′A × A′A × A′ (both automata accept).

• In a disjunctive product the set of

accepting states is (A × Q′) ∪ (Q × A′)(A × Q′) ∪ (Q × A′)(A × Q′) ∪ (Q × A′) (> 1> 1> 1 accept).

F23 122

Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }

Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }

• {ap
b

q | p{ap
b

q | p{ap
b

q | p is odd }}}.

Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }

• {ap
b

q | p{ap
b

q | p{ap
b

q | p is odd }}}.

• An automaton over {a,b,c}{a,b,c}{a,b,c} recognizing

the string that miss at least one letter.

Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }

• {ap
b

q | p{ap
b

q | p{ap
b

q | p is odd }}}.

• An automaton over {a,b,c}{a,b,c}{a,b,c} recognizing

the string that miss at least one letter. (The union of {a,b}∗{a,b}∗{a,b}∗ , {b,c}∗{b,c}∗{b,c}∗
and {c,a}∗{c,a}∗{c,a}∗).

F23 123

BASIC AND REGULAR LANGUAGES

Basic languages

• Fix ΣΣΣ. The basic ΣΣΣ-languages are generated by:

Basic languages

• Fix ΣΣΣ. The basic ΣΣΣ-languages are generated by:

◮ All finite languages

Basic languages

• Fix ΣΣΣ. The basic ΣΣΣ-languages are generated by:

◮ All finite languages

◮ Obtained by set operations:

If L, L′L, L′L, L′ are basic then so are

L ∪ L′L ∪ L′L ∪ L′ , L ∩ L′L ∩ L′L ∩ L′ , and L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L

Basic languages

• Fix ΣΣΣ. The basic ΣΣΣ-languages are generated by:

◮ All finite languages

◮ Obtained by set operations:

If L, L′L, L′L, L′ are basic then so are

L ∪ L′L ∪ L′L ∪ L′ , L ∩ L′L ∩ L′L ∩ L′ , and L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L

◮ Obtained by language operations:

If L, L′L, L′L, L′ are basic then so are L · L′L · L′L · L′ and L∗L∗L∗ .

F23 125

Regular languages

• The collection of regular languages is generated

like the basic languages, but with more frugality.

• We shall see that every basic language is regular,

but the frugality of regular languages

allows an economy of efforts and notations.

• The generative rules for regular languages:

◮ Basis: ∅∅∅ , {ε}{ε}{ε} , and {σ}{σ}{σ} for each σ ∈ Σ∗σ ∈ Σ∗σ ∈ Σ∗
.

◮ Set operation: If LLL and L′L′L′ are regular then so is L ∪ L′L ∪ L′L ∪ L′ .

◮ Language operations: If LLL and L′L′L′ are regular, then so are L · L′L · L′L · L′

and L∗L∗L∗.

F23 126

Every regular language is basic

• Proof by induction on the definition fo regular language.

• The initial regular languages are all finite,

so they are all initial basic languages.

• If regular languages L, L′L, L′L, L′ are basic,

then their union, concatenation and star are also basic,

since the union and concatenation of basic languages are basic.

F23 127

Regular expressions

• Aren’t we all bored and tired of writing all these braces?

• We can keep track of the generative process by simple road-maps, called

regular expressions.

• Given ΣΣΣ , the regular expressions over ΣΣΣ are generated by:

◮ The languages ∅∅∅, {ε}{ε}{ε} and {σ}{σ}{σ}
are named by ∅∅∅, εεε∅∅∅, εεε∅∅∅, εεε, and σσσσσσσσσ.

◮ If L, L′L, L′L, L′ are named by α, α′α, α′α, α′ then L ∪ L′L ∪ L′L ∪ L′ is named by (α)∪∪∪(α′)(α)∪∪∪(α′)(α)∪∪∪(α′),
L · L′L · L′L · L′ by (α)•(α′)(α)•(α′)(α)•(α′), and

L∗L∗L∗ by (α)⋆(α)⋆(α)⋆

F23 128

Decoding reg exp

• Formally, the function LLL
from regular expressions to regular languages

is defined by recurrence on the definition of reg exps.

• Base. L(∅∅∅)L(∅∅∅)L(∅∅∅) === ∅∅∅

L(εεε)L(εεε)L(εεε) === {ε}{ε}{ε}

L(σσσ)L(σσσ)L(σσσ) === {σ}{σ}{σ} (σ ∈ Σ)(σ ∈ Σ)(σ ∈ Σ)

• Recurrence cases:

L(α∪∪∪βL(α∪∪∪βL(α∪∪∪β === L(α) ∪ L(β)L(α) ∪ L(β)L(α) ∪ L(β)

L(α•••βL(α•••βL(α•••β === L(α) · L(β)L(α) · L(β)L(α) · L(β)

L(α⋆)L(α⋆)L(α⋆) === L(α)∗L(α)∗L(α)∗

F23 129

THE GRAND REGULAR UNITY

What makes automata and regularity so central

• We have three imporance language properties.

– Basic

– Recognized

– Regular

• Each is consequential,

and their equivalence demonstrates unity and coherence

F23 131

Uniting three definitions

• We’ll see that the following properties of languages are equivalent.

◮ LLL is basic

◮ LLL is recognized by an automaton

◮ LLL is regular

◮ LLL has finitely many residues

• The proofs are much easier using a broader notion of an automaton,

called nondeterministic automaton (NFAs).

• To avoid ambiguity, we’ll refer to automata as

deterministic automata (DFAs).

• Of course, we’ll need to show that a language is

recognized by an NFA iff it is recognized by a DFA.

F23 132

NONDETERMINISTIC AUTOMATA

The concatenation of recognized languages

• We proved: If L, L′L, L′L, L′ are recognized then so are L ∪ L′L ∪ L′L ∪ L′, L ∩ L′L ∩ L′L ∩ L′ and

L − L′L − L′L − L′.

The concatenation of recognized languages

• We proved: If L, L′L, L′L, L′ are recognized then so are L ∪ L′L ∪ L′L ∪ L′, L ∩ L′L ∩ L′L ∩ L′ and

L − L′L − L′L − L′.

• Concatenation?

Given automata MMM and M ′M ′M ′ recognizing LLL and L′L′L′

construct automaton KKK recognizing L · L′L · L′L · L′.

The concatenation of recognized languages

• We proved: If L, L′L, L′L, L′ are recognized then so are L ∪ L′L ∪ L′L ∪ L′, L ∩ L′L ∩ L′L ∩ L′ and

L − L′L − L′L − L′.

• Concatenation?

Given automata MMM and M ′M ′M ′ recognizing LLL and L′L′L′

construct automaton KKK recognizing L · L′L · L′L · L′.

M0 M1

s1s0

M

a

F23 134

Trying to make this work

M0 M1

s0

M

a s1

Trying to make this work

M0 M1

s0

M

a s1

• Problem: Can’t coalesce aaa and σ1σ1σ1 :

They might have conflicting transitions rules:

a

s
b

b

And computation might proceed back and forth between M0M0M0 and M1M1M1 .

F23 135

Spontaneous transitions

• We can force the computation to proceed from M0M0M0 to M1M1M1

by allowing spontaneous transitions between states,

q →pq →pq →p without any symbol read.

M0 M1

s0

M

a s1ε

• We call these epsilon-transitions , in analogy to the notation q w→ pq w→ pq w→ p .

Spontaneous transitions

• We can force the computation to proceed from M0M0M0 to M1M1M1

by allowing spontaneous transitions between states,

q →pq →pq →p without any symbol read.

M0 M1

s0

M

a s1ε

• We call these epsilon-transitions , in analogy to the notation q w→ pq w→ pq w→ p .

Spontaneous transitions

• We can force the computation to proceed from M0M0M0 to M1M1M1

by allowing spontaneous transitions between states,

q →pq →pq →p without any symbol read.

M0 M1

s0

M

a s1ε

• We call these epsilon-transitions , in analogy to the notation q w→ pq w→ pq w→ p .

F23 137

Nondeterminism

• εεε-transitions yield “ambiguous” computation:

a
2

a

1

ε

Nondeterminism

• εεε-transitions yield “ambiguous” computation:

a
2

a

1

ε

• So we might as well allow non-univalent (AKA nondeterministic)

transition rules.

Nondeterminism

• εεε-transitions yield “ambiguous” computation:

a
2

a

1

ε

• So we might as well allow non-univalent (AKA nondeterministic)

transition rules.

• This does not correspond to normal hardware behavior, but:

◮ The notion is important elsewhere

Nondeterminism

• εεε-transitions yield “ambiguous” computation:

a
2

a

1

ε

• So we might as well allow non-univalent (AKA nondeterministic)

transition rules.

• This does not correspond to normal hardware behavior, but:

◮ The notion is important elsewhere

◮ It can be simulated by εεε-transitions,

which do model natural phenomena; and

Nondeterminism

• εεε-transitions yield “ambiguous” computation:

a
2

a

1

ε

• So we might as well allow non-univalent (AKA nondeterministic)

transition rules.

• This does not correspond to normal hardware behavior, but:

◮ The notion is important elsewhere

◮ It can be simulated by εεε-transitions,

which do model natural phenomena; and

◮ It is algorithmically natural, as we see next.

F23 138

AUTOMATA AS ON-LINE ALGORITHMS

Automata as on-line algorithms

• Automata can be viewed as efficient real time algorithms,

which move pointers (or “tokens”) around.

• An automaton to recognize the presence of ababb:

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a

F23 140

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

F23 141

An alternative, with token rules relaxed

• Here we have ambiguities at the start and end of the chain.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

F23 142

Non-deterministic automata

A non-deterministic automaton over Σ:

• Finite (non-empty) set Q of states

• Start state s and accepting states A ⊆ Q

• Transition mapping: δ : (Q × Σǫ) ⇒ Qδ : (Q × Σǫ) ⇒ Qδ : (Q × Σǫ) ⇒ Q

• Here Σǫ = Σ ∪ {ε}Σǫ = Σ ∪ {ε}Σǫ = Σ ∪ {ε}

• Still using the notation q σ→ pq σ→ pq σ→ p for 〈q, σ, p〉 ∈ δ〈q, σ, p〉 ∈ δ〈q, σ, p〉 ∈ δ

• But q ǫ→ pq ǫ→ pq ǫ→ p is also an option.

F23 143

Computation state-traces

• If w = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σn where σi ∈ Σεσi ∈ Σεσi ∈ Σε,

and q
σ1→ r1

σ2→ r2 · · · rn−1
σn→ pq

σ1→ r1
σ2→ r2 · · · rn−1

σn→ pq
σ1→ r1

σ2→ r2 · · · rn−1
σn→ p

then q w=⇒pq w=⇒pq w=⇒p.

Computation state-traces

• If w = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σn where σi ∈ Σεσi ∈ Σεσi ∈ Σε,

and q
σ1→ r1

σ2→ r2 · · · rn−1
σn→ pq

σ1→ r1
σ2→ r2 · · · rn−1

σn→ pq
σ1→ r1

σ2→ r2 · · · rn−1
σn→ p

then q w=⇒pq w=⇒pq w=⇒p.

• The sequence of states

q r1 r2 · · · rn−1 pq r1 r2 · · · rn−1 pq r1 r2 · · · rn−1 p

as above is a state-trace of the NFA for input www.

F23 144

Generative definition of q w=⇒pq w=⇒pq w=⇒p

• Base. q ǫ→ qq ǫ→ qq ǫ→ q for all q ∈ Q.q ∈ Q.q ∈ Q.

• Step. If q σ→ pq σ→ pq σ→ p by the NFA’s transition,

and p w=⇒rp w=⇒rp w=⇒r has been generated already (where σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ) then q σ·w=⇒rq σ·w=⇒rq σ·w=⇒r.

F23 145

Acceptance by an NFA

• MMM accepts a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
if s w=⇒As w=⇒As w=⇒A.

Acceptance by an NFA

• MMM accepts a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
if s w=⇒As w=⇒As w=⇒A.

• This dfn is like for DFAs, but now

1. A string www is accepted if there is some state-trace for s w=⇒As w=⇒As w=⇒A .

2. A “lucky trace” may include ε-transitions.

Acceptance by an NFA

• MMM accepts a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
if s w=⇒As w=⇒As w=⇒A.

• This dfn is like for DFAs, but now

1. A string www is accepted if there is some state-trace for s w=⇒As w=⇒As w=⇒A .

2. A “lucky trace” may include ε-transitions.

• The language recognized by MMM
is the set of accepted strings.

F23 146

Example: L(a∗
b

∗
c

∗)L(a∗
b

∗
c

∗)L(a∗
b

∗
c

∗)

a b

ε

c

ε

F23 147

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε

ε ε ε

ε ε ε

a a

a a

b b

b b

a b a b b a b a* * * * * * * *U

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

>abb

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

a>bb

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

ab>b

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

abb>

So the number of states is reduced with each step.

F23 148

DFAs are special NFAs

• NFAs allow non-univalence, they don’t require it!

• So Every DFA is a special NFA,

where the transition mapping happens to be univalent

F23 149

Converting NFAs to equivalent DFAs

An NFA-to-DFA coversion example

• Given an NFA NNN :

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

• Mark as “on” the states reachable on entry:

b
b

aa

b
ε

ε

ε

1 3 5

42

ε

An NFA-to-DFA coversion example

• Given an NFA NNN :

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

• Mark as “on” the states reachable on entry:

b
b

aa

b
ε

ε

ε

1 3 5

42

ε

• This “super-state” is the start-state of our DFA.

• The possible states on reading an aaa :

So

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε
a

• Explore the super-states of reachable states:

So

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

a

• Explore the super-states of reachable states:

So

b

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

a

a

• Explore the super-states of reachable states:

So

b

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

S3
S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

a,b

a

a

• Explore the super-states of reachable states:

So

b

b

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

S3
S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

a,b

a

a

b

S4

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

a

• Explore the super-states of reachable states:

So

b

b

S

S

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

3
S2

S4

1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

a

a,b

a

a

a,b

b

• A super-state is accepting if containing an accept-state:

So

b

b

S

S

3
S2

S4

1

b
b

aa

b
ε

ε

ε

1 3 5

42

ε
b

b

aa

b
ε

ε

ε

1 3 5

42

ε

b
b

aa

b
ε

ε

ε

1 3 5

42

ε

b
b

aa

b
ε

ε

ε

1 3 5

42

ε

b
b

aa

b
ε

ε

ε

1 3 5

42

ε

a

a,b

a

a

a,b

b

The resulting DFA

• We have constructed from the NFA NNN an equivalent DFA! Each state of the

DFA obtained is a “super-state” of NNN ’s states:

The resulting DFA

• We have constructed from the NFA NNN an equivalent DFA! Each state of the

DFA obtained is a “super-state” of NNN ’s states:

b

O/

bb

1,2,3,4

1,2,3,4,5

a

4,5

a,b

a

3,4,5
a

a,b

The resulting DFA

• We have constructed from the NFA NNN an equivalent DFA! Each state of the

DFA obtained is a “super-state” of NNN ’s states:

b

O/

bb

1,2,3,4

1,2,3,4,5

a

4,5

a,b

a

3,4,5
a

a,b

• We labeled here each state as the super-state it represents.

F23 152

Another example

4

3

2

1

b

a b

b

b

a
ε

ε

Another example

4

3

2

1

b

a b

b

b

a
ε

ε

Another example

 1,3 O/ 2

a,b

a,b
a a

a

b b

b

1,2,3,41,3,4

F23 153

An exponential explosion

• If NNN has nnn states, then the DfA obtained

may have up to 2n2n2n states.

• Is that necessary?

• No! Consider the language of strings over {a,b,c}{a,b,c}{a,b,c} that miss at least one

letter.

• The smallest DFA recognizing it is

O/

−b,−c −c,−a −a,−b

−a −b

a b c

b a

a b c

−c

a
b

a

cc

b,c
c,aa,b

0,−a,−b,−c

F23 155

• But here is a 4-state NFA recognizing it:

−c

0

−a

−bε

ε

ε
b,c

a,c

a,b

• For “missed-som” language over the Latin alphabet

the smalles recognizing automaton has 226 > 67 million states!

• But here is a 27 state NFA recognizing it:

σ = / a

σ = / b

σ = / z

ε

ε

ε

F23 157

RECALL: Uniting three definitions

• We’ll see that the following properties of languages are equivalent.

◮ LLL is basic IMPLIES

◮ LLL is recognized by an automaton

◮ LLL is regular

◮ LLL has finitely many residues

F23 158

BASIC LANGUAGES ARE RECOGNIZED

Finite languages are recognized

• ∅∅∅ is recognized by an NFA

with one non-accepting state and no transitions.

Finite languages are recognized

• ∅∅∅ is recognized by an NFA

with one non-accepting state and no transitions.

• {ε}{ε}{ε} is recognized by an NFA

with one accepting state and no transitions.

Finite languages are recognized

• ∅∅∅ is recognized by an NFA

with one non-accepting state and no transitions.

• {ε}{ε}{ε} is recognized by an NFA

with one accepting state and no transitions.

• A string abaabaaba is recognized by the NFA

a b a

. Similarly for other strings.

F23 160

• A finite language {w1, . . . , wk}{w1, . . . , wk}{w1, . . . , wk} is recognized

by an NFA with εεε -branching to kkk NFAs recognizing

{w1}{w1}{w1} through {wk}{wk}{wk} .

• A finite language {w1, . . . , wk}{w1, . . . , wk}{w1, . . . , wk} is recognized

by an NFA with εεε -branching to kkk NFAs recognizing

{w1}{w1}{w1} through {wk}{wk}{wk} .

• Example {01, 10, 111}{01, 10, 111}{01, 10, 111} is recognized by

ε

ε

0 1

1 0

1 1 1

ε

F23 161

The complement of a recognized lang is recognized (reminder)

• As we have seen:

If a language LLL is recognized by DFA MMM , then its complement is recognized

by the DFA M̄̄M̄M
obtained by switching in MMM acceptance and non-acceptance.

The complement of a recognized lang is recognized (reminder)

• As we have seen:

If a language LLL is recognized by DFA MMM , then its complement is recognized

by the DFA M̄̄M̄M
obtained by switching in MMM acceptance and non-acceptance.

• Note: This idea doesn’t work for NFAs:

N:

a

a

N:

a

a

NFA NNN accepts aaa and so does N̄̄N̄N .

F23 162

The intersection of recognized languages is recognized (re-
minder)

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

The intersection of recognized languages is recognized (re-
minder)

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

and

• M2M2M2 recognizes L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) } .

b# w = 0 mod 2
b

b

aa

0 1

Two automata collaborating

0
a

b b

1 2

b

a

a

b

b

aa

10

b b b b b b

a0

0

a

0

1

aa

a

a

1

0

2

0

2

1

1

1

Conjuctive pairing

• Accepting when both accept:

b b b b b b

b

b

aa

10X Y Z

both accept

aX

0

a

X

1

aa

a

a

Y

0

Z

0

Z

1

Y

1

a

b b b

a

a

F23 165

The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).

The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).

• Here’s an NFA MMM that recognizes L0 · L1L0 · L1L0 · L1:

M1M0

s0

M

s1

ε

ε

The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).

• If w = u · vw = u · vw = u · v where u ∈ L0u ∈ L0u ∈ L0 and v ∈ L1v ∈ L1v ∈ L1

then s0
u→ a0

ǫ→ s1
v→ a1s0

u→ a0
ǫ→ s1

v→ a1s0
u→ a0

ǫ→ s1
v→ a1

for some a0 ∈ A0a0 ∈ A0a0 ∈ A0 and a1 ∈ A1a1 ∈ A1a1 ∈ A1 ,

MMM accepts www .

The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).

• Conversely, Suppose www is accepted by MMM , s0
w→ A1s0
w→ A1s0
w→ A1.

The trace starts in Q0Q0Q0 and ends in Q1Q1Q1 ,

so it must have a transition q →pq →pq →p for some q ∈ Q0q ∈ Q0q ∈ Q0 and p ∈ Q1p ∈ Q1p ∈ Q1.

The only such transitions are a ǫ→ s1a ǫ→ s1a ǫ→ s1 for a ∈ A0a ∈ A0a ∈ A0. MMM has no trasitions

from Q1Q1Q1 to Q0Q0Q0 , so the trace must be for s0
u→ a ǫ→ s1

v→ a′s0
u→ a ǫ→ s1

v→ a′s0
u→ a ǫ→ s1

v→ a′ for some

uuu accepted by M0M0M0 and some vvv accepted by M1M1M1 . Hence w = u · v ∈ L0 · L1w = u · v ∈ L0 · L1w = u · v ∈ L0 · L1.

F23 166

The plus and star of a recognized language are recognized

• Given a language L = L(M)L = L(M)L = L(M) here’s an NFA M+M+M+ recognizing L+L+L+:

ε

ε

s M0

M+

The plus and star of a recognized language are recognized

• Given a language L = L(M)L = L(M)L = L(M) here’s an NFA M+M+M+ recognizing L+L+L+:

ε

ε

s M0

M+

• Since L∗ = L+ ∪ {ε}L∗ = L+ ∪ {ε}L∗ = L+ ∪ {ε}, L∗L∗L∗ is also recognized.

F23 167

Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.

Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.

• Set operations yield recognized languages from recognized languages

(proofs using DFAs)

Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.

• Set operations yield recognized languages from recognized languages

(proofs using DFAs)

• Language operations yield recognized languages from recognized languages

(proofs using NFAs)

Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.

• Set operations yield recognized languages from recognized languages

(proofs using DFAs)

• Language operations yield recognized languages from recognized languages

(proofs using NFAs)

• So by induction on basic language every basic language is recognized.

F23 168

Uniting three definitions (reminder)

• We’ll see that the following properties of languages are equivalent.

◮ LLL is basic

◮ LLL is recognized by an automaton IMPLIES

◮ LLL is regular

◮ LLL has finitely many residues

F23 169

EVERY RECOGNIZED LANGUAGE IS REGULAR

Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c

Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c

a ∪ bca ∪ bca ∪ bc

Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c
d

Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c
d

a ∪ bd
∗
ca ∪ bd

∗
ca ∪ bd

∗
c

Getting from here to there

• What strings are leading from X to Y?

X Y

b
d

c

e

a

Getting from here to there

• What strings are leading from X to Y?

X Y

b
d

c

e

a

a ∪ b(ce)∗
cda ∪ b(ce)∗
cda ∪ b(ce)∗
cd

F23 171

Graphs with reg-exps as labels

◮ Starting with the given NFA,

Collapse labels: eg, replace q
a,b,ǫ
→ pq
a,b,ǫ
→ pq
a,b,ǫ
→ p by q a∪b∪ǫ→ pq a∪b∪ǫ→ pq a∪b∪ǫ→ p

◮ Create a new start state s0s0s0

with an ε-transition to the original start state of NNN .

◮ Create a new state a0a0a0 as the only accepting state,

and create an εεε-transition from each accepting state of NNN to a0a0a0.

F23 172

A working example

Text

a1 2

3

b

b b

a
a

F23 173

10

b

ε
2 5a

3

b

b

a
a

ε

F23 174

0

b

a

b

1

ab*a

3

b

a

a

ε ε
2 5

F23 175

0 ε
2 5

b

a

b U (ab*a)(b)*(a)

1

ab*a

ε

b*a

F23 176

0 2

b U (ab*a)(b)*(a)

5
ε

b*a

b*a (b U (ab*a)(b)*(a))*

L(N) = L(b∗ ·a·(b ∪ (a·b∗ ·a)·(b)∗ ·(a))∗)

F23 177

Another example

a a

b

b

1 2

30
a*b (a U ba*b)*

30

a U ba*b

εa*b
2

0 31

a a

b
ε ε

2

b

F23 179

Yet another example

a

b

c

b

c

2

1S

3

a

ε

ε

ε

A

F23 180

a

b

c

b

c

2

1S

3

a

ε

ε

ε

A

b*a

cb*a

F23 181

b

b

2

S

3

a

ε

ε

A

b*a

cb*a

c U ba*cb*a

 U ba*

F23 182

b

2

S A

b*a

c U ba*cb*a

(c U ba*cb*a)*b*a ε(U ba*)

ε U ba*

F23 183

AS
(c U ba*cb*a)*b*a ε(U ba*)

F23 184

The underlying math

• NFAs are not generated from components:

transition rules can go any which way.

• So how can be reason inductively about all NFAs?

• Look closer to what we want to prove:

Given an NFA M = (Q, s, A, ∆)M = (Q, s, A, ∆)M = (Q, s, A, ∆) over an alphabet Σ,

find a regular expression that denotes {w | s w→ A}{w | s w→ A}{w | s w→ A} .

• As was the case for the Unique Parsing Theorem,

we up the ante to make this work.

F23 185

Limitting the stepping stones

• For sets T ⊆ QT ⊆ QT ⊆ Q , consider the relation q w(T)w(T)w(T)
−−→ pq w(T)w(T)w(T)
−−→ pq w(T)w(T)w(T)
−−→ p that holds when

www leads from qqq to ppp using only states in TTT .

• In particular q w(Q)w(Q)w(Q)
−−→ pq w(Q)w(Q)w(Q)
−−→ pq w(Q)w(Q)w(Q)
−−→ p means q w→ pq w→ pq w→ p.

• Goal: For states q, pq, pq, p and T ⊆ QT ⊆ QT ⊆ Q {w | q w(T)w(T)w(T)
−−→ p}{w | q w(T)w(T)w(T)
−−→ p}{w | q w(T)w(T)w(T)
−−→ p} is denoted by some

regexp αq→p(T)αq→p(T)αq→p(T).

• Base: T = ∅T = ∅T = ∅, and αq→p(∅)αq→p(∅)αq→p(∅) must denote the set of σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ

for which q σ→ pq σ→ pq σ→ p is in the transition.

Take the union of those.

• Step: Given TTT and state r 6∈ Tr 6∈ Tr 6∈ T ,

and considering T ∪ {r}T ∪ {r}T ∪ {r},

define αq→p
T+rαq→p
T+rαq→p
T+r in terms of expressions α...

Tα...
Tα...
T .

• We have q w(T+r)w(T+r)w(T+r)
−−−→ pq w(T+r)w(T+r)w(T+r)
−−−→ pq w(T+r)w(T+r)w(T+r)
−−−→ p iff either q w(T)w(T)w(T)

−−→ pq w(T)w(T)w(T)
−−→ pq w(T)w(T)w(T)
−−→ p or w = u · x1 · · · · · xk · v,w = u · x1 · · · · · xk · v,w = u · x1 · · · · · xk · v,

where q u(T)u(T)u(T)
−−→ r x1(T)x1(T)x1(T)

−−→ r · · · xk(T)xk(T)xk(T)
−−→ r v(T)v(T)v(T)

−−→ pq u(T)u(T)u(T)
−−→ r x1(T)x1(T)x1(T)

−−→ r · · · xk(T)xk(T)xk(T)
−−→ r v(T)v(T)v(T)

−−→ pq u(T)u(T)u(T)
−−→ r x1(T)x1(T)x1(T)

−−→ r · · · xk(T)xk(T)xk(T)
−−→ r v(T)v(T)v(T)

−−→ p

F23 186

• So define αq→p
T+r = αq→p

T ∪ αq→r
T · (αr→r

T)∗ · αr→p
Tαq→p

T+r = αq→p
T ∪ αq→r

T · (αr→r
T)∗ · αr→p

Tαq→p
T+r = αq→p

T ∪ αq→r
T · (αr→r

T)∗ · αr→p
T

• One concern: to preserve info about acceptance we should not

eliminate the start state or any accepting state.

• Solution:

1. New start s0s0s0 with s0
ǫ→ ss0
ǫ→ ss0
ǫ→ s;

2. New unique accept a0a0a0 with a ǫ→ a0a ǫ→ a0a ǫ→ a0 for each a ∈ Aa ∈ Aa ∈ A.

3. Now L(N) = αs0→a0
QL(N) = αs0→a0
QL(N) = αs0→a0
Q . QED

• We showed an algorithmic implementation of the construction above.

F23 187

TWO-WAY DFAs

A stronger read-only deterministic device

• Consider the language LLL over [a − z]

of words that include all letters.

No English word is in LLL, but probably every book.

• LLL is a regular language: it is the intersection

of the 26 languages {w | w{w | w{w | w has σ}σ}σ} for σ = a,b...σ = a,b...σ = a,b....

• The smallest DFA that recognizes LLL
has > 226 > 67, 000, 000> 226 > 67, 000, 000> 226 > 67, 000, 000 states.

• The smallest NFA recognizing LLL has 27 states.

• Is there a deterministic algorithm

that does it with a manageable number of states?

F23 189

A deterministic algorithm for the all-letters problem

• Algorithm: Scan for each digit separately, and repeat.

• This cannot be done if we only read forward!

The cursor would have to be scrolled back (or repositioned).

• SO let’s imagine a device that behaves just like an automaton,

but can move the cursor both ways.

F23 190

Some challenges

• Symbol read determines not only next state,

but also next move: forward or backward.

• To detect the ends of the input string it must have end-markers,

say >>> (the gate) on the left,

and ⊔⊔⊔ (the blank) on the right.

• Termination is not by reading through,

but needs to be declared by a final accept state.

(We need not guarantee termination.)

F23 191

Two-way automata

A two-way automaton (2DFA) over an alphabet Σ:

• Finite set of states QQQ

• s ∈ Qs ∈ Qs ∈ Q, the initial state

• a ∈ Sa ∈ Sa ∈ S, the accepting state

• Transition partial-function: δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.

• Write q
σ(α)
→ pq
σ(α)
→ pq
σ(α)
→ p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉

F23 192

Two-way automata

• δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.

• Write q
σ(α)
→ pq
σ(α)
→ pq
σ(α)
→ p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉

The intent:

• ΓΓΓ end-markers >>> (gate) and ⊔⊔⊔ (blank) added to ΣΣΣ

• Example: Input 001201001201001201 appears as >001201⊔>001201⊔>001201⊔

• The actions +++ and −−− stand for “step forward” and “step back.”

F23 193

Example: The strings using all of a,b,c

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

• With 26 in place of 3 we’d have 53 states,

as opposed to > 67, 000, 000> 67, 000, 000> 67, 000, 000 states in the smallest DFA!

F23 194

Operation of 2DFAs: configurations

• For DFAs we could generate the relation p w→ qp w→ qp w→ q
inductively, as a function of www.

• This is no longer the case for 2DFAs:

here we must account for the cursor position

and keep record of the entire input for future use.

• A cursored-string over ΣΣΣ is a Σ−Σ−Σ−string with one underlined symbol-

position.

• A configuration (cfg) is a pair (q, w̌)(q, w̌)(q, w̌) where

◮ qqq is a state, and

◮ w̌̌w̌w is a cursored-string,

That is, (((state, cursored-string))).

• Example: (q, >0101100⊔)(q, >0101100⊔)(q, >0101100⊔)

• The initial cfg for input www is the cfg (s, >w ⊔)(s, >w ⊔)(s, >w ⊔).

F23 195

The YIELD relation

• The Yield relation ⇒⇒⇒
(or ⇒M⇒M⇒M when it matters which MMM) is obtained by:

•

◮ If q
γ (+)
→ pq

γ (+)
→ pq

γ (+)
→ p

then (q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)

◮ If q
γ (−)
→ pq

γ (−)
→ pq

γ (−)
→ p

then (q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)

◮ Nothing else

• If the given cfg is (q, 011010)(q, 011010)(q, 011010),

and q
0(+)
→ pq
0(+)
→ pq
0(+)
→ p, then the transition above does not apply.

The same holds when invoking a transition q
0(−)
→ pq
0(−)
→ pq
0(−)
→ p

for a configuration with a cursor at the head of the string, such as (q, 011010)(q, 011010)(q, 011010).

F23 196

Traces, acceptance, recognition

• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no transition applies (no yield).

It is a accepting its state is accepting state aaa.

• A trace of MMM for input www
is a sequence of

c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·

where c0c0c0 is initial for www, and either

1. the sequence is infinite; or

2. the sequence is finite, and its last cfg is terminal.

• The trace is accepting if it is finite

and its last cfg is accepting.

• MMM accepts w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

if it its trace for input www is accepting.

• The language recognized by MMM is

L(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | M accepts w }w }w }

F23 197

Example

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

Accepting trace for trace of MMM above for w = bcabw = bcabw = bcab:

(1, >bcab⊔)(1, >bcab⊔)(1, >bcab⊔)

⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)

⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)

⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)

⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)

⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)

⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)

⇒ (4, >bcab⊔)⇒ (4, >bcab⊔)⇒ (4, >bcab⊔)

⇒ (5, >bcab⊔)⇒ (5, >bcab⊔)⇒ (5, >bcab⊔)

⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)

⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)

⇒ (7, >bcab⊔)⇒ (7, >bcab⊔)⇒ (7, >bcab⊔)

F23 199

(1, >bcab⊔)(1, >bcab⊔)(1, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 201

(2, >bcab⊔)(2, >bcab⊔)(2, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 202

(2, >bcab⊔)(2, >bcab⊔)(2, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 203

(2, >bcab⊔)(2, >bcab⊔)(2, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 204

(3, >bcab⊔)(3, >bcab⊔)(3, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 205

(3, >bcab⊔)(3, >bcab⊔)(3, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 206

(3, >bcab⊔)(3, >bcab⊔)(3, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 207

(4, >bcab⊔)(4, >bcab⊔)(4, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 208

(5, >bcab⊔)(5, >bcab⊔)(5, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 209

(6, >bcab⊔)(6, >bcab⊔)(6, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 210

(6, >bcab⊔)(6, >bcab⊔)(6, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 211

(7, >bcab⊔)(7, >bcab⊔)(7, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 212

Two-way automata recognize just
regular languages!

• Yet another characterization of regular languages!

• Adding nondeterminism to 2DFA still recognizes just regular languages!

• We still avoid extensible memory, so this is not a big surprise.

F23 213

Proof outline

• DFA recognize languages with finitely many residues L/wL/wL/w.

• For each www a finite amount of info suffices to decide x ∈ L/wx ∈ L/wx ∈ L/w.

• For DFA the info is the state qqq reached: s w→ qs w→ qs w→ q .

• For 2DFA the scan might cross out of www and into xxx .

back in, and then out again into xxx.

• This is the info needed about www:

If the reading cross back into www in a state

• The extra info:

the pairs (in, out)(in, out)(in, out) of states

s.t. crossing back into w in state in

leads to crossing back out in state out.

u

p1

p0

xσ

w

s

position read

time

F23 215

Every language recognized by a is regular!

• Say that 〈p0, p1〉〈p0, p1〉〈p0, p1〉 is a back-crossing pair.

• L/wL/wL/w is determined by qqq reached by reading www,

plus the set of back-crossing pairs for www:

if w, w′w, w′w, w′ reach the same state,

and have the same crossing pairs, then L/w = L/w′L/w = L/w′L/w = L/w′.

s

p0

p1

p2

s

a
time time

p0

p1

p2

a

q

p3

position read position read

q

p3

in xx in

w x w’ x

L/w L/w’IFF

• For MMM with kkk states

there are k2k2k2 potential back-crossing pairs,

and so 2k2
2k2
2k2

possible descriptions of the situation at the border.

• Finitely many residues, albeit a lot, but still

recognizing a regular language!

F23 218

