
MATHEMATICAL MACHINES



Computing

• Most computing consists in actions that modify data:

◮ The data is textual

◮ The actions are discrete: well-defined and single-step.



Computing

• Most computing consists in actions that modify data:

◮ The data is textual

◮ The actions are discrete: well-defined and single-step.

• The data is textual because discrete data has textual representation.

(Though not all computing is discrete, eg Analog Computing is not.)
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Acceptors

• What algorithms do.

• Two main options: acceptors and transducers.

• An acceptor is an algorithm that takes a textual input

(representing input data)

and upon termination may or may not issue accept as output.

• An acceptor that terminates for all input is a decider.

• When a decider terminate for an input without accepting

we say that it rejects the input.

• A decider is thus a solution for a decision problem.
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Transducers

• A transducer is an algorithm that takes strings as input,

and upon termination yields a string as output.

• A transducer computes a partial-function

(i.e. univalent mapping).

• An acceptor can be viewed as a transducer

with accept as the only possible output;

and a decider as a total transducer with accept and reject

as the only possible outputs.
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The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

◮ Random-access, or sequential reading?

• We start with the automaton,

an acceptor with no external memory that reads its input sequentially!

• This model captures the behavior of

many familiar physical devices.

Let’s look at a couple of very simple ones.
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The electric switch

toggle

toggle

• The position of the switch is inverted

after an odd number of toggles,

and remains unchanged after an even number.
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The ceiling fan

• A ceiling fan with manual cord-controlled:

The speed is incremented (mod 2) with each pull.

0

1 2

pull

pull

pull
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The toll-turnstile

• The turnstile can be in one of two states: locked or unlocked.

• The action insert token

changes the state locked into unlocked.

• The action push and pass

changes the state unlocked into locked.
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States

• A core concept of mathematical machines is the state.

• E.g. a state of an elevator might consist of

its position, motion (up, down, rest), upcoming destinations, time idle, etc.

• States are often labeled, for convenience, but don’t have to be.



States

• A core concept of mathematical machines is the state.

• E.g. a state of an elevator might consist of

its position, motion (up, down, rest), upcoming destinations, time idle, etc.

• States are often labeled, for convenience, but don’t have to be.

• Given a practical problem, deciding what are the relevant “states”

often requires careful analysis.

• But once a mathematical model is distilled,

the states become an abstraction,

which we can represent graphically, e.g. by a circle.
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Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

• We focus for now on transitions that are functions,

i.e. univalent and total.

• A pair of states related by a transition-rule aaa is an action of aaa.

• For the toll-turnstile and the stopwatch

the transition-rules are determined by certain human actions.

F23 10



Textual form of transitions

• Since all finite discrete structures have simple textual codes,

we can assume that:

1. All input data is textual

2. Each transition is coded by a single reserved letter

3. The action of the transition labeled aaa

is the reading (i.e. consumption) of aaa,

much like the movement of a cursor.

bracadabraa

bracadabra

a
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A transition system

• A transition-system consists of a set of states

and transition-rules over them.

• So a transition-system can be represented as a labeled di-graph:

The nodes are the states,

and the the actions are labeled edges.

• When all transition-rules are functions,

there is exactly one edge for each state and action:
a

bb

a

b

a
a,b

We merge arrow-labels for readability.



Example: Detecting an odd number of actions

• Consider the switch.

We represent the transition “toggle” by the letter aaa ,

and label the states as 1 and 2:
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Example: Detecting an odd number of actions

• Consider the switch.

We represent the transition “toggle” by the letter aaa ,

and label the states as 1 and 2:

1 2

a

a

• The device reads strings of aaa’s,

and with each letter read it switch state.

• Reading odd number of aaa ’s leads to the opposite state.

• The physical nature of the toggle action is no longer present,

and is indeed irrelevant.
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Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1

a

a

2



Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1

a

a

2

Where do the strings of length 1,3,... odd nnn lead?



Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1 2

a

a

• The strings of odd length leads to state 2,

so to accept just those strings we’d set 2

as the unique accepting state.

• We do this graphically by doubling the contour of state 2.

• In general there can be several accepting states.
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Initial state can be accepting

• It is possible that the initial state is accepting.

• To accept the strings of even length

set 1 as the only accepting state:

1 2

a

a
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The device in action

• Device accepting odd length:

2

2

2

2

READING

aa

aaa

a

a

a

1

a

a

1

a

a

1

a

a

1
string accepted IFF has odd
aaa accepted

    #a
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The device in action

• Device accepting even length:

2

2

2

2

READING

aa

aaa

a

a

a

a

a

a

a

a

a

1

1

1

1
string accepted IFF has even
aaa not accepted

#a
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Definition of automata

• An automaton, aka deterministic finite automaton (DFA)

consists of

◮ An alphabet ΣΣΣ .

◮ A non-empty finite set QQQ of objects called states .

◮ One state s ∈ Qs ∈ Qs ∈ Q singled out as initial-state (or initial-state).

◮ A set A ⊆ SA ⊆ SA ⊆ S of states singled out as accepting states .

◮ A transition function δ : Q × Σ → Qδ : Q × Σ → Qδ : Q × Σ → Q.

Given state q ∈ Qq ∈ Qq ∈ Q and input-symbol σσσ
δ(q, σ)δ(q, σ)δ(q, σ) is the new (target) state.

• We also write q σ→ pq σ→ pq σ→ p for δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p.

Note: ppp may be the same as qqq.
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Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

• MMM is over the alphabet ΣΣΣ.

We don’t mention ΣΣΣ when irrelevant or clear.

• Automaton is of Greek origin:

auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

• Since automata play a central role,

they’ve acquired over time several alternative names, in particular deter-

ministic finite automaton (DFA).which we’ll frequently use.
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Some practical applications of automata

Textual applications

• Pattern matching, search engines

• Lexical analysis for compilation

• Data compression

• Automatic translation



Some practical applications of automata

Software systems

• Cyber-security

• System planning

• Information streaming

• Bio-informatics



Some practical applications of automata

Hardware systems

• Circuit design

• Robotics



Some practical applications of automata

Verification

• System modeling

• Verification of communication protocols

• Verification of embedded systems

• Model checking
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Example of a formal description

• Here’s an automaton MMM over Σ = {a,b}Σ = {a,b}Σ = {a,b} that accepts strings

with an odd number of aaa’s (and no others).

a

a

1 2

b b



Example of a formal description

• Here’s an automaton MMM over Σ = {a,b}Σ = {a,b}Σ = {a,b} that accepts strings

with an odd number of aaa’s (and no others).

a

a

1 2

b b

• Its formal definition: M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) where

⋆ Σ = {a,b}Σ = {a,b}Σ = {a,b}

⋆ Q = {1, 2}Q = {1, 2}Q = {1, 2}

⋆ s = 1s = 1s = 1

⋆ A = {2}A = {2}A = {2}
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Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

• The steps of an automaton change just the state,

and the implicit move to the next input symbol.

• Since the transition mapping of an automaton is a function,

there is exactly one next-state for each symbol read.

• Computation terminates iff the end of the input string is reached.

• The essence of a DFA is in its being an online acceptor .
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Traces
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Traces

• If w = σ1 · · · σnw = σ1 · · · σnw = σ1 · · · σn then we write q σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ p
to state that

q σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ p

for some states r1, . . . , rn−1r1, . . . , rn−1r1, . . . , rn−1.

• The sequence of states q, r1, r2, · · · rn−1, pq, r1, r2, · · · rn−1, pq, r1, r2, · · · rn−1, p

is a state-trace of the automaton.
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Inductive definition of traces

• The ternary relation q w→ pq w→ pq w→ p can be defined inductively,

by recurrence on www :

◮ q εεε−→ qq εεε−→ qq εεε−→ q

◮ If δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p that is q σ uσ uσ u−−→ rq σ uσ uσ u−−→ rq σ uσ uσ u−−→ r,

and p uuu−→ rp uuu−→ rp uuu−→ r then p σ→ qp σ→ qp σ→ q.



Inductive definition of traces

• The ternary relation q w→ pq w→ pq w→ p can be defined inductively,

by recurrence on www :

◮ q εεε−→ qq εεε−→ qq εεε−→ q

◮ If δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p that is q σ uσ uσ u−−→ rq σ uσ uσ u−−→ rq σ uσ uσ u−−→ r,

and p uuu−→ rp uuu−→ rp uuu−→ r then p σ→ qp σ→ qp σ→ q.

• This definition invokes no auxiliary data

that might be modified during execution.

• No mathematical machine we’ll encounter (except NFAs)

has such a definition:

They all are based on a notion of configuration,

which combines the machine’s states with modifiable data.
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Accepted strings, recognized languages

• For A ⊆ QA ⊆ QA ⊆ Q let’s write q w→ Aq w→ Aq w→ A

when q w→ pq w→ pq w→ p for some p ∈ Ap ∈ Ap ∈ A.

• MMM accepts www when s www−→ As www−→ As www−→ A.

• The language recognized by MMM is

L(M)L(M)L(M) === {w ∈ Σ∗ | M{w ∈ Σ∗ | M{w ∈ Σ∗ | M accepts w }w }w }

=== {w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}

• We re-use here the notation L(· · · )L(· · · )L(· · · ) that we used for regular expressions.

• Two automata are equivalent if they recognize the same language.
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Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

6. Computation stops when the input’s end is reached.

7. No auxiliary memory or devices.
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Example: An automaton for Mod 3

2

3

1

b b

a

aa

b

• w ∈ {a,b}∗w ∈ {a,b}∗
w ∈ {a,b}∗

accepted iff #a(w) 6= 0 ( mod 3)#a(w) 6= 0 ( mod 3)#a(w) 6= 0 ( mod 3)
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Example of an accepted string

1

b b

a

a

b

2

a

baab
3

• State 1 (initial). Nothing read yet.
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An accepted string

1

b b

a

a

b

2

a

baab
3

• Still state 1. Initial bbb read.
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An accepted string

1

b b

a

a

b

2

a

baab
3

• Read bababa, state 2.
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An accepted string

3

1

b b

a

a

b

2

a

baab

• Read baabaabaa, state 3.
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An accepted string

3

1

b b

a

a

b

2

a

baab

• Finished reading baabbaabbaab, state 3, accepted.
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A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• State 1 (initial). Nothing read yet.
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A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• Read aaa, State 2.
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A non-accepted string

3

1

b b

a

a

b

2

a

aaba

• Read aaaaaa, state 3.
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A non-accepted string

3

1

b b

a

a

b

2

a

aaba

• Read aabaabaab, state 3.
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A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• Finished reading aabaaabaaaba, state 1, not accepted.
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A computation trace

• For our example above, the computation for the string baabbaabbaabbaabbaabbaabbaabbaabbaab is

1 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 31 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 31 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 3.

Abbreviated notation: 1 baabbaabbaab−−−→ 31 baabbaabbaab−−−→ 31 baabbaabbaab−−−→ 3

• The computation for the string aabaaabaaabaaabaaabaaabaaabaaabaaaba is

1 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 11 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 11 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 1.

Abbreviated notation: 1 aabaaabaaaba−−−→ 31 aabaaabaaaba−−−→ 31 aabaaabaaaba−−−→ 3
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Example: Addition mod 4

• The following automaton is over the alphabet {0, 1, 2, 3}{0, 1, 2, 3}{0, 1, 2, 3}

• It accept a string of digits iff they add up to 2 modulo 4.

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0
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• Reading input 210322103221032 from initial state AAA:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

A 21032
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• Reads remaining string 103210321032:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

C  1032
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• Reads remaining string 032032032:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

D   032
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• Reads remainder 323232:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

D    32
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• Reads remainder 222:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

C     2
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• Reads remainder εεε (empty string):

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

A        ε

• Ends reading. AAA not an accept-state, 210322103221032 not accepted.
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Additional examples

a

b a,b

10

0 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 10 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 10 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 1

0 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 00 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 00 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 0

What is the language recognized?
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Three letter example

c

a,b a,b,c

10

0 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 10 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 10 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 1

0 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 10 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 10 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 1

What are the language accepted?
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An automaton with a sink

10 b

a
b

X

a

a,b

0 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 10 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 10 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 1

0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X
Note: Every state has exactly one arrow for every σ ∈ Σσ ∈ Σσ ∈ Σ.

• A sink is a non-accepting state with

all outgoing transitions pointing to itself.
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Example

Here is a trivial automaton with a single state:

L

a,b

What strings are accepted?
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Example

O

b,c

a
L 0a

b,c

a

a,b,c

accepts the strings with exactly one aaa , and no other.
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Example

 b ε

O

a a b

b a,b
b a

aab ab

a,b

accepts the string aabaabaab and no other.
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CONSTRUCTING AUTOMATA



From a language to arecognizing automaton

• We give a method that, given a language LLL ,

attempts to construct a DFA MMM recognizing LLL .

• If and when the process teminates, we obtain such an MMM .

• We start with a couple of non-trivial examples,

before articulating the method and giving more examples.
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Example: aaa’s precede bbb’s

a

b

b

a*bb* b*

a

a,bO/

• Construct an automaton recognizing L(a∗
bb

∗)L(a∗
bb

∗)L(a∗
bb

∗). That is,

accepting strings of aaa ’s followed by one or more bbb ’s,

and only those.

• The initial state is the declaration of this goal.

• What will be an updated goal after reading an aaa?



Reading an aaa

a

b

b

a*bb* b*

a

a,bO/

• The goal is unchanged!.

• But what happens if we read a bbb?



Reading a bbb

a

b

b

a*bb* b*

a

a,bO/

• A new goal: from now on only bbb ’s, any number.

• What if we read a bbb now?



Reading another bbb

a

b

b

a*bb* b*

a

a,bO/

• No change.

• And what if, instead, we read an aaa ?



Reading an aaa instead

O/

a

b

b

a*bb* b*

a

a,b

• This is a non-accept, now and forever. I.e. a sink .

• And which are the accepting states?



What are the accepting states

O/

a

b

b

b*

a

a,b

a*bb*

• Accept if current goal is satisfied when

nothing left to read,

i.e. when the current string is εεε.

• This completes the construction.
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Example: Ending as it starts

Reading the first letter

w σσ0
1

2

3

*

4

ε
a

b

0

4

3

b

ab

a

b

b

a

a
w a

w b

ε

w a

w bε

• Construct an automaton accepting strings σwσσwσσwσ,

i.e. with last letter identical to the first, and no others.

• The initial state is the declaration of this goal.

• What will be the updated goals after reading the first letter?



Example: Ending as it starts

Reading the first letter:

w σσ

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a
w a

w b

• Either this is the last letter, or else it repeats at the end.

• What if we now read this letter again?



Example: Ending as it starts

Sought letter repeated:

w σσ

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a
w a

w b

ε

• The goal does not change.

• And what about the opposite letter now?



Example: Ending as it starts

Reading opposite letter:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• The option of not reading further has been blocked.



Example: Ending as it starts

Opposite letter repeating:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• But if the sought letter is read now,

the previous goal is restored.

• And if we keep reading the wrong letter?



Example: Ending as it starts

Return to sought letter:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• No change of goal.

• What are the accepting states?



Example: Ending as it starts

The accepting states:

w σσ

w a

w b

w a

w b

a

b

0

2 4

31

b

ab

a

b

b

a

a

0
1

2

3

*

4

ε

ε

• Accept if current goal is satisfied when nothing left to read.

• This completes the construction.
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Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?



Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

• Programming is a goal oriented process.

The relevant mission is to achieve a goal.

The initial task of an acceptor for LLL is

“accept the strings in LLL and no others”!



Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

• Programming is a goal oriented process.

The relevant mission is to achieve a goal.

The initial task of an acceptor for LLL is

“accept the strings in LLL and no others”!

• The tasks are adjusted as the input string is read.

Each task is of the form

the string ahead leads into a string in LLL
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Identifying accepting tasks

• The development above updates states (conditions)

as required when symbols σσσ are read.

• A string x = σux = σux = σu satisfying the current condition (=state) leads to AAA
iff uuu started at the next condition leads to AAA.

• So the accepting conditions are the ones that are satisfied

when reading ends, i.e. when the string-ahead is εεε.
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Example: Repeated last symbol

σσw
a

b

a b0

0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

ε a σσw

a σσw

state dictionary



Example: Repeated last symbol

σσw

σσwaa

b

a b0

1 0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

ε a σσw



Example: Repeated last symbol

σσw

σσwa

ε a σσw

a

b

a b0

1 0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ



Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4



Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4



Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4



Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4
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Example: Recognizing odd length

#a odd

b

a

a
b

#a even

◮ Initial task: accept strings with an odd number of aaa’s



Example: Recognizing odd length

#a odd

b

a

a
b

#a even

◮ Reading a bbb does not change the task



Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Reading an aaa revises the task to:

accept strings with an even number of aaa’s



Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Same reasoning for the “even” task



Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Accept description fulfilled by εεε.
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Example: aba∗aba∗aba∗

a*
a

L ba*

a

b

O

a

a,b

b b

Accepts the strings of the form aba
n

aba
n

aba
n with n > 0n > 0n > 0,

and no others.



Example: aba∗aba∗aba∗

a*
a

L ba*

a

b

O

a

a,b

b b

Accepts the strings of the form aba
n

aba
n

aba
n with n > 0n > 0n > 0,

and no others.

• Note the sink at the bottom of the diagram.
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A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

a*
b

a

/

◮ Initial task: accept strings of aaa’s



A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

a*
b

a

/

◮ Reading an aaa does not change the task



A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

/a*
b

a a,b

◮ Reading a bbb revises the task to

not accepting anything. A sink.



A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

/

a,b

a*

a

b

◮ No escape from the sink
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Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a  # a  # a
i       j        k

i + j = k
# #

# #

a a a a a a

#

# a,#

k = 0j = k

/

a
k 

k = 0
/a  # a 

j       k 

j = k
/

a  # a  # a
i       j        k

i + j = k
/

a
k 

a  # a 
j       k 



Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a  # a  # a
i       j        k

a  # a  # a
i       j        k

i + j = k/

i + j = k
# #

# #

a a a a a a

#

# a,#

k = 0j = k

/

a
k 

k = 0
/a  # a 

j       k 

j = k
/

a  # a 
j       k a

k 

Reading aaa’s toggles between equlity and inequality of parities.



Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a  # a  # a
i       j        k

a  # a  # a
i       j        k

a  # a 
j       k 

i + j = k/

i + j = k
# #

# #

a a a a a a

#

# a,#

k = 0j = k

/

a
k 

k = 0
/a  # a 

j       k 

j = k
/

a
k 

Reading the separator ### means i = 0i = 0i = 0.



Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a  # a  # a
i       j        k

a  # a  # a
i       j        k

a  # a 
j       k 

a  # a 
j       k 

a
k 

a
k 

j = k k = 0i + j = k/ / /

i + j = k
# #

# #

a a a a a a

#

# a,#

k = 0j = k

/

The same arguments are repeated



Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a  # a  # a
i       j        k

a  # a  # a
i       j        k

a  # a 
j       k 

a  # a 
j       k 

a
k 

a
k 

/

j = k k = 0i + j = k/ / /

i + j = k
# #

# #

a a a a a a

#

# a,#

k = 0j = k

Encountering an extra separator leads to a sink



Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}{ai #a
j #a

k | i + j = k mod 2}

a  # a  # a
i       j        k

a  # a  # a
i       j        k

a  # a 
j       k 

a  # a 
j       k 

a
k 

a
k 

/

j = k k = 0i + j = k/ / /

i + j = k
# #

# #

a a a a a a

#

# a,#

k = 0j = k

The single one accepting state is the one satisfied by εεε.



Summary of the method

• The initial acceptance-condition is

the language to be recognized.



Summary of the method

• The initial acceptance-condition is

the language to be recognized.

• Given a new acceptance-condition, each each σ ∈ Σσ ∈ Σσ ∈ Σ
find what condition is required after reading σσσ .



Summary of the method

• The initial acceptance-condition is

the language to be recognized.

• Given a new acceptance-condition, each each σ ∈ Σσ ∈ Σσ ∈ Σ
find what condition is required after reading σσσ .

• That is, a string σuσuσu satisfies the current condition iff

uuu satisfies the condition after σσσ is read.



Summary of the method

• The initial acceptance-condition is

the language to be recognized.

• Given a new acceptance-condition, each each σ ∈ Σσ ∈ Σσ ∈ Σ
find what condition is required after reading σσσ .

• That is, a string σuσuσu satisfies the current condition iff

uuu satisfies the condition after σσσ is read.

• A condition is an accepting state iff it is satisfied by εεε.
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Example: Two consecutive aaa’s

Construct an automaton recognizing L(Σ∗ · aa · Σ∗)L(Σ∗ · aa · Σ∗)L(Σ∗ · aa · Σ∗)

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!



Example: Two consecutive aaa’s

Reading bbb leaves the task unchanged:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!



Example: Two consecutive aaa’s

But reading aaa opens two future options:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!



Example: Two consecutive aaa’s

From these two options reading bbb kills the first:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!



Example: Two consecutive aaa’s

But reading an aaa settles acceptance:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!



Example: Two consecutive aaa’s

No further reading alterns that conclusion:

accept!
2 consec a’s
or starts w/ a

a

b

b

a

a,b

2 consecutive a’s
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Example 7: a∗
b

∗
c

∗
a

∗
b

∗
c

∗
a

∗
b

∗
c

∗

0/

a*b*c* b*c* c*

a

b c

c
a b

c

a,b

• Label states as we wish, with optional “dictionary.”

a
a,b

b c

c
a b

c

2 31

0
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Example: Initial aaa or the string baabaabaa

Σ∗

{aa}

{a}

/

b

a

b

a a

σ
b

σ

o

L

{ε}
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Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1



Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

• This table does not look like a string.

But all such tables have height 3 we can consider each column as a “symbol” in the alphabet

Σ = {0, 1}3Σ = {0, 1}3Σ = {0, 1}3
, that is

Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}



Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

• This table does not look like a string.

But all such tables have height 3 we can consider each column as a “symbol” in the alphabet

Σ = {0, 1}3Σ = {0, 1}3Σ = {0, 1}3
, that is

Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}Σ3 = {













0

0

0













,













0

0

1













,













0

1

0













,













0

1

1













,













1

0

0













,













1

0

1













,













1

1

0













,













1

1

1













}

• The long addition above can be consrued as the string













0

0

1

























0

1

0

























1

1

0

























1

0

1

























0

1

1

























0

0

1

























0

1

0

























1

1

0

























1

0

1

























0

1

1

























0

0

1

























0

1

0

























1

1

0

























1

0

1

























0

1

1















An automaton recognizing symbolic binary addition

• Is there an automaton over Σ3Σ3Σ3
that recognizes

the correct symbolic binary additions?

• Construct an automaton MMM that accepts strings like



















0

0

1





































1

1

1





































1

1

1





































1

1

0





































0

0

1





































1

1

1





































1

1

1





































1

1

0





































0

0

1





































1

1

1





































1

1

1





































1

1

0



















but not strings like



















0

1

1





































1

1

1





































1

1

0





































1

0

0





































0

1

1





































1

1

1





































1

1

0





































1

0

0





































0

1

1





































1

1

1





































1

1

0





































1

0

0


















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An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1  1  0  1
1, 0, 0, 0

1  1  1  0 0  0  0  1
0  0  1  0
0, 1, 1, 1

1  0  1
1  1  0
1, 0, 0

0  1  0
0  0  1
0, 1, 1

0
1

0

1
1
0

Start state is the goal that the table adds-up:

remaining columns add up



An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1  1  0  1
1, 0, 0, 0

1  1  1  0 0  0  0  1
0  0  1  0
0, 1, 1, 1

1  0  1
1  1  0
1, 0, 0

0  1  0
0  0  1
0, 1, 1

0
1

0

1
1
0

Start state is the goal that the table adds-up:

remaining columns add up

The main other state is remaining columns yield carry-over



An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1  1  0  1
1, 0, 0, 0

1  1  1  0 0  0  0  1
0  0  1  0
0, 1, 1, 1

1  0  1
1  1  0
1, 0, 0

0  1  0
0  0  1
0, 1, 1

0
1

0

1
1
0

There is one column switching from add-up to carry-over



An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1  1  0  1
1, 0, 0, 0

1  1  1  0 0  0  0  1
0  0  1  0
0, 1, 1, 1

1  0  1
1  1  0
1, 0, 0

0  1  0
0  0  1
0, 1, 1

0
1

0

1
1
0

There is one column switching from add-up to carry-over

and one column switching back from carry-over to add-up



An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1  1  0  1
1, 0, 0, 0

1  1  1  0 0  0  0  1
0  0  1  0
0, 1, 1, 1

1  0  1
1  1  0
1, 0, 0

0  1  0
0  0  1
0, 1, 1

0
1

0

1
1
0

Three columns leave the add-up goal unchanged



An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0  1  0
0  0  1
0, 1, 1

1  0  1
1  1  0
1, 0, 0

σ

SINK

add up carry over

1  1  0  1
1, 0, 0, 0

1  1  1  0 0  0  0  1
0  0  1  0
0, 1, 1, 1

Three columns leave the add-up goal unchanged

and three leaave carry-over unchaged



An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0  1  0
0  0  1
0, 1, 1

1  0  1
1  1  0
1, 0, 0

σ

SINK

add up carry over

1  1  0  1
1, 0, 0, 0

1  1  1  0 0  0  0  1
0  0  1  0
0, 1, 1, 1

Four columns lead from add-up to a sink



An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0  0  0  1
0  0  1  0
0, 1, 1, 1

0  1  0
0  0  1
0, 1, 1

1  0  1
1  1  0
1, 0, 0

1  1  1  0
1  1  0  1
1, 0, 0, 0

σ

SINK

add up carry over

Four columns lead from add-up to a sink

and four from carry-over to that sink



An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0  0  0  1
0  0  1  0
0, 1, 1, 1

0  1  0
0  0  1
0, 1, 1

1  0  1
1  1  0
1, 0, 0

1  1  1  0
1  1  0  1
1, 0, 0, 0

σ

SINK

add up carry over

Finally, sink is a sink.
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Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• The numerals divisible by 2 are those that end with 000.



Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.



Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).



Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

We have that 4k =3 14k =3 14k =3 1 , by induction on k.

◮ 40 = 140 = 140 = 1

◮ If 4k = 3x + 14k = 3x + 14k = 3x + 1 then 4k+1 = 4(3x + 1) = 13x + 1.4k+1 = 4(3x + 1) = 13x + 1.4k+1 = 4(3x + 1) = 13x + 1.



Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

We have that 4k =3 14k =3 14k =3 1 , by induction on k.

So 22k = 3x + 122k = 3x + 122k = 3x + 1 for some xxx , and 22k+1 = 2(3x + 1) = 6x + 222k+1 = 2(3x + 1) = 6x + 222k+1 = 2(3x + 1) = 6x + 2 .

∴ 2n =3 12n =3 12n =3 1 for even nnn , and =3 2=3 2=3 2 for odd nnn .
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Example: Binary numerals divisible by 3

• For any input www the expectation depends on the parity of |w||w||w| , the goals are

therefore of the form

Either |w||w||w| is even and [w] =3 x[w] =3 x[w] =3 x or |w||w||w| is odd and [w] =3 y[w] =3 y[w] =3 y

Let’s abbreviate this as (x, y)(x, y)(x, y) .



Example: Binary numerals divisible by 3

• For any input www the expectation depends on the parity of |w||w||w| , the goals are

therefore of the form

Either |w||w||w| is even and [w] =3 x[w] =3 x[w] =3 x or |w||w||w| is odd and [w] =3 y[w] =3 y[w] =3 y

Let’s abbreviate this as (x, y)(x, y)(x, y) .

• From the observation above it follows that (x, y) 1→ (y+2, x+1)(x, y) 1→ (y+2, x+1)(x, y) 1→ (y+2, x+1), and

(x, y) 0→ (y, x).(x, y) 0→ (y, x).(x, y) 0→ (y, x).
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• This yields the following DFA:

0

0

1

1

(0,0)

0 1

(1,2)(2,1)

1

1

0

0

0

1

Condensed:

|w| odd, [w]=2|w| odd, [w]=0

|w| even, [w]=0

or

|w| even, [w]=2

|w| odd, [w]=1

|w| even, [w]=1

or or
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RESIDUES AND THEIR APPLICATIONS



More examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since invent is a word.

• The residue L/adL/adL/ad contains the strings vance, apt, opt, d,vance, apt, opt, d,vance, apt, opt, d, and ǫǫǫǫǫǫǫǫǫ.

• Take L = {ab}L = {ab}L = {ab}, a singleton language.

We have L/ε = {ab}L/ε = {ab}L/ε = {ab}, L/a = {b}L/a = {b}L/a = {b} , and L/ab = εL/ab = εL/ab = ε.

For any other string www , L/w = ∅L/w = ∅L/w = ∅.

• For any language LLL we have L/ε = LL/ε = LL/ε = L:

w ∈ Lw ∈ Lw ∈ L iff ε ∈ L/wε ∈ L/wε ∈ L/w.
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More examples yet

• L = {0, 00, 010}L = {0, 00, 010}L = {0, 00, 010}

L/εL/εL/ε = L

L/0L/0L/0 = {ε, 0, 10}{ε, 0, 10}{ε, 0, 10}

L/00L/00L/00 = {ε}{ε}{ε}

L/01L/01L/01 = {0}{0}{0}

L/010L/010L/010 = {ε}{ε}{ε}

L/wL/wL/w = ∅∅∅for any otherwww

L/00 = L/010L/00 = L/010L/00 = L/010, so there are five (different) residues.
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An example with language union

• L = {aw | w ∈ Σ∗} ∪ {baa}L = {aw | w ∈ Σ∗} ∪ {baa}L = {aw | w ∈ Σ∗} ∪ {baa}.

L/εL/εL/ε = LLL

L/wL/wL/w = Σ∗Σ∗Σ∗ if www starts with aaa

L/bL/bL/b = {aa}{aa}{aa}

L/baL/baL/ba = {a}{a}{a}

L/baaL/baaL/baa = {ε}{ε}{ε}

L/wL/wL/w = ∅∅∅ for any other www

There are 6 residues.

LLL and Σ∗Σ∗Σ∗
are infinite languages, the others are finite.
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A single-letter language

• Σ = {0, 1}Σ = {0, 1}Σ = {0, 1} , L = {0}∗L = {0}∗L = {0}∗.

• If w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
contains 111 then L/w = ∅L/w = ∅L/w = ∅.

Otherwise L/w = LL/w = LL/w = L.

There are two residues.
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A language based on occurrence count

• L = {w ∈ {0, 1} | #0(w) is even }L = {w ∈ {0, 1} | #0(w) is even }L = {w ∈ {0, 1} | #0(w) is even }.

If #0(w)#0(w)#0(w) is even then L/wL/wL/w is LLL,

otherwise L/w = {w | #0(w)L/w = {w | #0(w)L/w = {w | #0(w) is odd }}}
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Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x
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0
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Lq
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Some string xxx may lead from qqq to acceptance.
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• Denote the set of all such xxx ’s by LqLqLq.

In particular, Ls = LLs = LLs = L .
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Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x

1

2

0

q

a

Lq

• Denote the set of all such xxx ’s by LqLqLq.

In particular, Ls = LLs = LLs = L .
x

x

w
x

1

2

0

q

a

a’

Lq

• Note: We focus on the future of qqq , not its past!

(The past would be the set of strings leading to qqq )



States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.
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States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.

• xxx completes www to a string in LLL :
x

x

w
x

1

2

0

qs

a

a’

Lq
• LqLqLq is L/w =L/w =L/w = the residue of LLL over www:

x

x

w
x

1

2

0

qs

a

a’

L w



A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.
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A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.

• Proof. If s u→ qs u→ qs u→ q and s v→ qs v→ qs v→ q then L/u = L/vL/u = L/vL/u = L/v .

• Consequently:

Theorem.

A language with infinitely many residues is not recognized.
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Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.
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since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.
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the rest of the string should have nnn extra 000’s.
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so the two residues are different .



Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

• For each nnn we have

L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n} ,

since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.

• If i 6= ji 6= ji 6= j then 0i ∈ L/1i0i ∈ L/1i0i ∈ L/1i but 6∈ L/1j6∈ L/1j6∈ L/1j

so the two residues are different .

∴∴∴ LLL is not recognized, since it has infinitely many residues.
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States and residues

• We developed automata by thinking of residues as states.

• Let MMM be an automaton over ΣΣΣ .

For a state qqq of MMM define

Lq =df {x ∈ Σ∗ | q x→ A }Lq =df {x ∈ Σ∗ | q x→ A }Lq =df {x ∈ Σ∗ | q x→ A }

• In particular, for the start state Ls = LLs = LLs = L.

• If s w→ qs w→ qs w→ q then Lq = L/wLq = L/wLq = L/w.

Lq

s q

w x1

x2

=  L / w

⋆ Each string leads from sss to some state.

⋆ All strings leading from sss to a state qqq have the same residue.
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The Myhill-Nerode Theorem

Lq

s q

w x1

x2

=  L / w

• Every residue L/wL/wL/w is LqLqLq for qqq as above.

• And two different residues L/w 6= L/xL/w 6= L/xL/w 6= L/x must correspond

to two different states.

• So we have an injection that maps residues to states,

I.e. the number of residues is bounded by the number of states.

• Theorem. (John Myhill and Anil Nerode (1958)) (simplified and rephrased):

L(M)L(M)L(M) cannot have more residues than MMM has states.

• Consequence: A language with infinitely many residues

cannot be recognized by any automaton!



Showing that a language fails recognition

• We saw that L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)} has infinitely many

residues.

• Consequence: It cannot be recognized by any automaton!!!

• General method: show that LLL is not recognized

by showing that there are infinitely many residues.

• We do not need to consider all residues,

only some infinite selection, defined by a template

• We do not need to calculate the residues we choose,

only show that each two of them are different .

• We show them different by exhibiting a string which is in one

but not in the other.
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Example: Unary addition

• Representing unary addition, using unary numerals

and the symbols for addition and equality:

• L = {1k + 1m = 1k+m | k, m > 1}L = {1k + 1m = 1k+m | k, m > 1}L = {1k + 1m = 1k+m | k, m > 1}

• What residues would you select?
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• L/ 1n + 1 =L/ 1n + 1 =L/ 1n + 1 = for each n > 1n > 1n > 1.

• Suppose i 6= ji 6= ji 6= j.

What string is in L/ 1i + 1 =L/ 1i + 1 =L/ 1i + 1 = but not in L/ 1j + 1 =L/ 1j + 1 =L/ 1j + 1 = ?
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Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?
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• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

• Then 0i1 ∈ L/0i10i1 ∈ L/0i10i1 ∈ L/0i1,

but for j > ij > ij > i we have 0i1 6∈ L/0j10i1 6∈ L/0j10i1 6∈ L/0j1 ,

because it has two 111’s in its first half and none in the second.



Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

• Then 0i1 ∈ L/0i10i1 ∈ L/0i10i1 ∈ L/0i1,

but for j > ij > ij > i we have 0i1 6∈ L/0j10i1 6∈ L/0j10i1 6∈ L/0j1 ,

because it has two 111’s in its first half and none in the second.

• Since each two of these residues are different,

LLL has infinitely many residues,

and cannot be recognized by a DFA.
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Example: Residues for perfect squares

• L = {1n2
| n > 0}L = {1n2
| n > 0}L = {1n2
| n > 0}.

• Consider the residues L/1n2
L/1n2
L/1n2

for each n > 0n > 0n > 0.

• The first perfect square following n2n2n2 is (n+1)2 = n2 + 2n + 1(n+1)2 = n2 + 2n + 1(n+1)2 = n2 + 2n + 1.

• So the shortest non-null string of L/1i2L/1i2L/1i2 is 12i+112i+112i+1.

• It follows that 12i+1 ∈ L/1i212i+1 ∈ L/1i212i+1 ∈ L/1i2

but 12i+1 6∈ L/1j2
12i+1 6∈ L/1j2
12i+1 6∈ L/1j2

for any j > ij > ij > i.

• Since every two of these residues are different,

LLL has infinitely many residues,

and cannot be recognized by any automaton.
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Building automata directly from residues

• We showed that every recognized language has finitely many residues.

• The converse is also true:

• If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
has finitely many residues, then L = L(M)L = L(M)L = L(M) where:

⋆ The states of MMM are the residues.

⋆ The initial state is L/ε = LL/ε = LL/ε = L .

⋆ A state L/wL/wL/w is accepting iff it contains εεε.

⋆ The transitions are given by L/w σ→ L/wσL/w σ→ L/wσL/w σ→ L/wσ .

• We used the same idea to construct automata, except that here

we assume that the residues are given to us.

• We write Res(L)Res(L)Res(L) for the automaton constructed from residues.
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Recognized = finitely many residues

• A language LLL is recognized iff it has finitely many residues.

• The DFA constructed from LLL’s residues

has the fewer states

• Given a DFA MMM recognizing LLL , and a state qqq,
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AUTOMATA ARE REPETITIVE
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2

2

2

11

1 1

1 1 1 22 1

• Here’s an automaton that accepts a string w ∈ {1, 2}∗w ∈ {1, 2}∗w ∈ {1, 2}∗

iff the sum of the digits in www is 2 mod (4)2 mod (4)2 mod (4).
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1 1 1 12 1

• This is its trace for input 111212111212111212.

The input has 6 symbols, so the trace lists 7 states.
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• Looking at the first 5 of the 7, we must have a state repeating,

because there are only 4 states.



2

2

2

2

11

1 1

1 1 1 12 1

The same happens for the next stretch of 5 states (i.e. 4 input symbols)
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And the next one.

No matter which window of 5 states we take there will be a state repeating!
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We can short-cut the steps from the yellow state to itself,

and the result will still be a legit trace, but for 112112112.
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11

1 1

1 1 1 1 21

We can short-cut the steps from the yellow state to itself,

and the result will still be a legit trace, but for 112112112.
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The Shortcut Theorem

• Theorem. Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′
→ pq u′
→ pq u′
→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.
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The Shortcut Theorem

• Theorem. Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′
→ pq u′
→ pq u′
→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.

• Suppose we have s
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ A with |u| > k|u| > k|u| > k .

Then s
w0→ p u′

→ q
w1→ As

w0→ p u′
→ q

w1→ As
w0→ p u′

→ q
w1→ A
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The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.
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The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

• We call uuu the critical substring,

the occurrence of yyy the clipped substring,

and w′w′w′ the reduced string.
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Clipping step by step
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Clipping step by step
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An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

1. ℓ ∈ [30..100]ℓ ∈ [30..100]ℓ ∈ [30..100]

2. ℓ ∈ [10..25]ℓ ∈ [10..25]ℓ ∈ [10..25]

3. ℓ ∈ [0..9]ℓ ∈ [0..9]ℓ ∈ [0..9]

4. Can’t tell, could be anything.
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string of length < k< k< k.



An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

• Theorem. If a kkk-state automaton MMM accepts some string, then it accepts a

string of length < k< k< k.

• Proof: Let www be a shortest string accepted by MMM .

If |w| > k|w| > k|w| > k then we invoke the Clipping Theorem,

with www itself for uuu,

and obtain a w′ ∈ Lw′ ∈ Lw′ ∈ L shorter than www.

This contradicts the assumed minimality of |w||w||w|.
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The Clipping Property

• The Clipping Theorem:

Every recogized LLL has this Clipping Property:

◮ There is a kkk (# of states of an acceptor for LLL),

◮ so that for every w ∈ Lw ∈ Lw ∈ L and substring uuu of length > k> k> k ,

◮ uuu has a “clippable” substring y 6= εy 6= εy 6= ε:

removing yyy from www yields a string in LLL .

• A language fails Clipping when

◮ for any k > 0k > 0k > 0

◮ we can choose w ∈ Lw ∈ Lw ∈ L and substring uuu of length > k> k> k ,

◮ so that any clipping off uuu yields w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.



Example: an-bn

• Let L = {an
b

n | n > 0}L = {an
b

n | n > 0}L = {an
b

n | n > 0}

• LLL fails clipping:

1. Let k > 0k > 0k > 0

2. Choose w = a
k
b

kw = a
k
b

kw = a
k
b

k and u = a
ku = a
ku = a
k.

We have w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipping in uuu yields from www
a w′w′w′ of the form a

p
b

k
a

p
b

k
a

p
b

k with p < kp < kp < k.

So w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• Consequence: LLL fails the Clipping Property and cannot be recognized.
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Example: Unary addition

• Consider the strings representing addition in unary:

A = {1p +++ 1q === 1p+q | p, q > 0}A = {1p +++ 1q === 1p+q | p, q > 0}A = {1p +++ 1q === 1p+q | p, q > 0}.

• AAA fails the Clipping Property:

1. Let k > 0k > 0k > 0.

2. Choose w = 1k +++ 1 === 1k+1w = 1k +++ 1 === 1k+1w = 1k +++ 1 === 1k+1

and uuu the substring 1k+11k+11k+1.

w ∈ Aw ∈ Aw ∈ A and |u| > k|u| > k|u| > k.

3. Any clipping in uuu yields from www a string

w′ = 1ℓ +++ 1 = 1k+1w′ = 1ℓ +++ 1 = 1k+1w′ = 1ℓ +++ 1 = 1k+1 with ℓ < kℓ < kℓ < k.

w′ 6∈ Aw′ 6∈ Aw′ 6∈ A .

• AAA fails Clipping, and so cannot be recognized.
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Example: Perfect squares in unary

• Consider L = {1n2
| n > 0}L = {1n2
| n > 0}L = {1n2
| n > 0}.

• LLL fails the Clipping Property:

1. Let k > 0k > 0k > 0.

2. Choose w = 1k2
w = 1k2
w = 1k2

and u = 1ku = 1ku = 1k.

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. For any clipped yyy we have 1 6 |y| 6 |u| = k1 6 |y| 6 |u| = k1 6 |y| 6 |u| = k ,

so for the reduced string w′ = 1ℓw′ = 1ℓw′ = 1ℓ where k2 − k 6 ℓ < k2k2 − k 6 ℓ < k2k2 − k 6 ℓ < k2.

w′ 6∈ Lw′ 6∈ Lw′ 6∈ L because ℓℓℓ cannot be a square: the largest square preceding

k2k2k2 is (k−1)2 = k2 − 2k + 1(k−1)2 = k2 − 2k + 1(k−1)2 = k2 − 2k + 1 which is < k2 − k 6 ℓ< k2 − k 6 ℓ< k2 − k 6 ℓ.

• So LLL fails Clipping, and cannot be recognized.
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• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.
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Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}

• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

1. Let k > 0k > 0k > 0.

2. Choose w = 01k01kw = 01k01kw = 01k01k and u =u =u = left substring 1k1k1k in www .

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipped yyy in uuu yields from www
a reduced string w′ = 01ℓ01kw′ = 01ℓ01kw′ = 01ℓ01k

where ℓ < kℓ < kℓ < k.

Such w′w′w′ cannot be of the form xxxxxx,

because its first half starts with 000

while its second half starts with 111.

• LLL fails the Clipping Property, and cannot be recognized.
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Pumping up rather than clipping

q0 = qm
x

y

z
qjqi

qjq0
x

qi q  = qj        i

y y

qm
z

qj

... 731 times ...
q0

x
qi q  = qj        i

yy

q  = qj        i

y y

qj qm
z
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Pumping step-by-step
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Pumping step-by-step

w0

r

y w1

s q r

yx

ap

z

rr

y
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Pumping instances

• Let w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
and

yyy a particular substring of www : w = x · y · zw = x · y · zw = x · y · z.

• The nnn-th pumping instance of w = x · y · zw = x · y · zw = x · y · z
over (the exhibited occurrence of) yyy
is defined to be x · yn · zx · yn · zx · yn · z.
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The Pumping Theorem

• Let MMM be a kkk-state DFA over ΣΣΣ, L = L(M)L = L(M)L = L(M).

• As for Clipping, choose w ∈ Lw ∈ Lw ∈ L and a substring uuu of www of length > k> k> k.

• CONCLUDE: uuu has a non-empty substring yyy
such that all pumping instances of www over yyy are in LLL.

• Recall: The nnn-th pumping instance of www over

(a particular occurrence of) yyy
is the result of replacing yyy by ynynyn.
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Failing Pumping

A language fails Pumping when:

1. For any k > 0k > 0k > 0

2. there are w ∈ Lw ∈ Lw ∈ L
and substring uuu of www of length > k> k> k

3. so that for every yyy within uuu
there is a pumping instance www over yyy which is not in LLL.
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• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.
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Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }

• Suppose LLL is recognized by a kkk-state DFA MMM .

• Take a prime p > kp > kp > k and w = 1p ∈ Lw = 1p ∈ Lw = 1p ∈ L.

• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.

• The (p+1)(p+1)(p+1)-st pumping instance of www over yyy
has length |w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1),
which is not prime.

• Contradiction. MMM cannot exist.
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Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

• Suppose LLL were recognized by a kkk-state DFA.

Let w = b
k
a

kw = b
k
a

kw = b
k
a

k, which is in LLL,

and take u = b
ku = b
ku = b
k , the prefix of www.

• By the Pumping Theorem uuu has a substring y = b
ℓy = b
ℓy = b
ℓ where ℓ > 0ℓ > 0ℓ > 0 such

that b
k+nℓ

a
k ∈ Lb

k+nℓ
a

k ∈ Lb
k+nℓ

a
k ∈ L for all n > 0n > 0n > 0. In particular, for n = 1n = 1n = 1 we have

w′ = b
k+ℓ

a
k ∈ Lw′ = b

k+ℓ
a

k ∈ Lw′ = b
k+ℓ

a
k ∈ L .

But this is impossible, because the second half of this w′w′w′

has bbb ’s, so w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• Thus no DFA recgnizes LLL .
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Minimum states for finite language recognition

• Any finite language LLL is recognized by an automaton!

• But how many states are needed?

• At least as many as the longest string-length in LLL.

• Proof: If MMM with kkk states recognizes a string longer than kkk,

then Pumping applies, and LLL is infinite!
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MODIFYING & COMBINING AUTOMATA
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• Some people use “automaton” for our “partial-automaton”

and “total-automaton” for our “automaton.”
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From partial- to total-automaton

• Theorem. Every partial-automaton MMM can be converted

into a total-automaton M̄̄M̄M equivalent to MMM , i.e. recognizing the same

language.

Do you seee how?

• Just add a sink to MMM :

convert 3

a

b

0

1

2

a

b

to 0

b a

ba a

b

a,b

a,b
3

1

K

2

• That is, M̄̄M̄M is obtained by adding to MMM
a sink state KKK , with all missing transitions of MMM
as well as outgoing transition from KKK , pointing to KKK .



Application: Additional languages recognized

• Suppose MMM recognizes {w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.{w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.{w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.

• Then swapping states in MMM yields an automaton recognizing

{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}
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Application: Showing a language not-recognized

• Show L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)} is not recognized.

• Clipping doesn’t work!

• Use Clipping to show that

L′ = {w ∈ {a,b}∗ | #a(w) = #b(w)}L′ = {w ∈ {a,b}∗ | #a(w) = #b(w)}L′ = {w ∈ {a,b}∗ | #a(w) = #b(w)}

is not recognized.

ow observe that L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗L′ = L̄ ∩ {a}∗ · {b}∗ .
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Combining two automata

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }
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This is special parallelism:

the two processors may work in tandem,

because they read the same input one symbol at a time.



Two automata collaborating

0
a

b b

1 2

b

a

a

b

b

aa
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b b b b b b

a0
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Conjuctive pairing

• Accepting when both accept:

b b b b b b

b

b

aa

10X Y Z

both accept

aX

0

a

X
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aa

a

a

Y
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Y

1

a
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a
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Disjunctive pairing

• Accepting when at least one automaton accepts:

b b b b b b

X

0

a a

X

1

aa

a

a

Y

0

Z

0

Z

1

Y

1

a

b b b

a

a

X Y Z

b

b

aa
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at least one accepts



Formal definition of automata product
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q σ→ pq σ→ pq σ→ p in MMM and q′ σ→ p′q′ σ→ p′q′ σ→ p′ in M ′M ′M ′.

• In a conjunctive product the set of

accepting states is A × A′A × A′A × A′ (both automata accept).

• In a disjunctive product the set of

accepting states is (A × Q′) ∪ (Q × A′)(A × Q′) ∪ (Q × A′)(A × Q′) ∪ (Q × A′) (> 1> 1> 1 accept).
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Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }

• {ap
b

q | p{ap
b

q | p{ap
b

q | p is odd }}}.

• An automaton over {a,b,c}{a,b,c}{a,b,c} recognizing

the string that miss at least one letter. (The union of {a,b}∗{a,b}∗{a,b}∗ , {b,c}∗{b,c}∗{b,c}∗
and {c,a}∗{c,a}∗{c,a}∗).
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Basic languages

• Fix ΣΣΣ. The basic ΣΣΣ-languages are generated by:

◮ All finite languages

◮ Obtained by set operations:

If L, L′L, L′L, L′ are basic then so are

L ∪ L′L ∪ L′L ∪ L′ , L ∩ L′L ∩ L′L ∩ L′ , and L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L

◮ Obtained by language operations:

If L, L′L, L′L, L′ are basic then so are L · L′L · L′L · L′ and L∗L∗L∗ .
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Regular languages

• The collection of regular languages is generated

like the basic languages, but with more frugality.

• We shall see that every basic language is regular,

but the frugality of regular languages

allows an economy of efforts and notations.

• The generative rules for regular languages:

◮ Basis: ∅∅∅ , {ε}{ε}{ε} , and {σ}{σ}{σ} for each σ ∈ Σ∗σ ∈ Σ∗σ ∈ Σ∗
.

◮ Set operation: If LLL and L′L′L′ are regular then so is L ∪ L′L ∪ L′L ∪ L′ .

◮ Language operations: If LLL and L′L′L′ are regular, then so are L · L′L · L′L · L′

and L∗L∗L∗.
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Every regular language is basic

• Proof by induction on the definition fo regular language.

• The initial regular languages are all finite,

so they are all initial basic languages.

• If regular languages L, L′L, L′L, L′ are basic,

then their union, concatenation and star are also basic,

since the union and concatenation of basic languages are basic.
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Regular expressions

• Aren’t we all bored and tired of writing all these braces?

• We can keep track of the generative process by simple road-maps, called

regular expressions.

• Given ΣΣΣ , the regular expressions over ΣΣΣ are generated by:

◮ The languages ∅∅∅, {ε}{ε}{ε} and {σ}{σ}{σ}
are named by ∅∅∅, εεε∅∅∅, εεε∅∅∅, εεε, and σσσσσσσσσ.

◮ If L, L′L, L′L, L′ are named by α, α′α, α′α, α′ then L ∪ L′L ∪ L′L ∪ L′ is named by (α)∪∪∪(α′)(α)∪∪∪(α′)(α)∪∪∪(α′),
L · L′L · L′L · L′ by (α)•(α′)(α)•(α′)(α)•(α′), and

L∗L∗L∗ by (α)⋆(α)⋆(α)⋆
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Decoding reg exp

• Formally, the function LLL
from regular expressions to regular languages

is defined by recurrence on the definition of reg exps.

• Base. L(∅∅∅)L(∅∅∅)L(∅∅∅) === ∅∅∅

L(εεε)L(εεε)L(εεε) === {ε}{ε}{ε}

L(σσσ)L(σσσ)L(σσσ) === {σ}{σ}{σ} (σ ∈ Σ)(σ ∈ Σ)(σ ∈ Σ)

• Recurrence cases:

L(α∪∪∪βL(α∪∪∪βL(α∪∪∪β === L(α) ∪ L(β)L(α) ∪ L(β)L(α) ∪ L(β)

L(α•••βL(α•••βL(α•••β === L(α) · L(β)L(α) · L(β)L(α) · L(β)

L(α⋆)L(α⋆)L(α⋆) === L(α)∗L(α)∗L(α)∗
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THE GRAND REGULAR UNITY



What makes automata and regularity so central

• We have three imporance language properties.

– Basic

– Recognized

– Regular

• Each is consequential,

and their equivalence demonstrates unity and coherence
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Uniting three definitions

• We’ll see that the following properties of languages are equivalent.

◮ LLL is basic

◮ LLL is recognized by an automaton

◮ LLL is regular

◮ LLL has finitely many residues

• The proofs are much easier using a broader notion of an automaton,

called nondeterministic automaton (NFAs).

• To avoid ambiguity, we’ll refer to automata as

deterministic automata (DFAs).

• Of course, we’ll need to show that a language is

recognized by an NFA iff it is recognized by a DFA.
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The concatenation of recognized languages

• We proved: If L, L′L, L′L, L′ are recognized then so are L ∪ L′L ∪ L′L ∪ L′, L ∩ L′L ∩ L′L ∩ L′ and
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The concatenation of recognized languages

• We proved: If L, L′L, L′L, L′ are recognized then so are L ∪ L′L ∪ L′L ∪ L′, L ∩ L′L ∩ L′L ∩ L′ and

L − L′L − L′L − L′.

• Concatenation?

Given automata MMM and M ′M ′M ′ recognizing LLL and L′L′L′

construct automaton KKK recognizing L · L′L · L′L · L′.

M0 M1

s1s0

M

a
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Trying to make this work
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Trying to make this work

M0 M1

s0

M

a s1

• Problem: Can’t coalesce aaa and σ1σ1σ1 :

They might have conflicting transitions rules:

a

s
b

b

And computation might proceed back and forth between M0M0M0 and M1M1M1 .
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Spontaneous transitions

• We can force the computation to proceed from M0M0M0 to M1M1M1

by allowing spontaneous transitions between states,

q →pq →pq →p without any symbol read.
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• We can force the computation to proceed from M0M0M0 to M1M1M1

by allowing spontaneous transitions between states,

q →pq →pq →p without any symbol read.

M0 M1

s0

M

a s1ε

• We call these epsilon-transitions , in analogy to the notation q w→ pq w→ pq w→ p .
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Nondeterminism

• εεε-transitions yield “ambiguous” computation:

a
2

a

1

ε

• So we might as well allow non-univalent (AKA nondeterministic)

transition rules.

• This does not correspond to normal hardware behavior, but:

◮ The notion is important elsewhere

◮ It can be simulated by εεε-transitions,

which do model natural phenomena; and

◮ It is algorithmically natural, as we see next.
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AUTOMATA AS ON-LINE ALGORITHMS



Automata as on-line algorithms

• Automata can be viewed as efficient real time algorithms,

which move pointers (or “tokens”) around.

• An automaton to recognize the presence of ababb:

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a
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The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.
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The operation visualized

• The automaton’s operation can be visualized by

moving a token designating the current state.

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a
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An alternative, with token rules relaxed

• Here we have ambiguities at the start and end of the chain.
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An alternative, with token rules relaxed

• There are options for the “current state”.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a
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Non-deterministic automata

A non-deterministic automaton over Σ:

• Finite (non-empty) set Q of states

• Start state s and accepting states A ⊆ Q

• Transition mapping: δ : (Q × Σǫ) ⇒ Qδ : (Q × Σǫ) ⇒ Qδ : (Q × Σǫ) ⇒ Q

• Here Σǫ = Σ ∪ {ε}Σǫ = Σ ∪ {ε}Σǫ = Σ ∪ {ε}

• Still using the notation q σ→ pq σ→ pq σ→ p for 〈q, σ, p〉 ∈ δ〈q, σ, p〉 ∈ δ〈q, σ, p〉 ∈ δ

• But q ǫ→ pq ǫ→ pq ǫ→ p is also an option.
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Computation state-traces

• If w = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σn where σi ∈ Σεσi ∈ Σεσi ∈ Σε,

and q
σ1→ r1

σ2→ r2 · · · rn−1
σn→ pq

σ1→ r1
σ2→ r2 · · · rn−1

σn→ pq
σ1→ r1
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Computation state-traces

• If w = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σn where σi ∈ Σεσi ∈ Σεσi ∈ Σε,

and q
σ1→ r1

σ2→ r2 · · · rn−1
σn→ pq

σ1→ r1
σ2→ r2 · · · rn−1

σn→ pq
σ1→ r1

σ2→ r2 · · · rn−1
σn→ p

then q w=⇒pq w=⇒pq w=⇒p.

• The sequence of states

q r1 r2 · · · rn−1 pq r1 r2 · · · rn−1 pq r1 r2 · · · rn−1 p

as above is a state-trace of the NFA for input www.
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Generative definition of q w=⇒pq w=⇒pq w=⇒p

• Base. q ǫ→ qq ǫ→ qq ǫ→ q for all q ∈ Q.q ∈ Q.q ∈ Q.

• Step. If q σ→ pq σ→ pq σ→ p by the NFA’s transition,

and p w=⇒rp w=⇒rp w=⇒r has been generated already (where σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ) then q σ·w=⇒rq σ·w=⇒rq σ·w=⇒r.

F23 145



Acceptance by an NFA
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Acceptance by an NFA

• MMM accepts a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
if s w=⇒As w=⇒As w=⇒A.

• This dfn is like for DFAs, but now

1. A string www is accepted if there is some state-trace for s w=⇒As w=⇒As w=⇒A .

2. A “lucky trace” may include ε-transitions.

• The language recognized by MMM
is the set of accepted strings.
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Example: L(a∗
b

∗
c

∗)L(a∗
b

∗
c

∗)L(a∗
b

∗
c

∗)

a b

ε

c

ε
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abb>

So the number of states is reduced with each step.
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DFAs are special NFAs

• NFAs allow non-univalence, they don’t require it!

• So Every DFA is a special NFA,

where the transition mapping happens to be univalent
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Converting NFAs to equivalent DFAs



An NFA-to-DFA coversion example

• Given an NFA NNN :

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

• Mark as “on” the states reachable on entry:

b
b

aa

b
ε

ε

ε

1 3 5

42

ε



An NFA-to-DFA coversion example

• Given an NFA NNN :

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

• Mark as “on” the states reachable on entry:

b
b

aa

b
ε

ε

ε

1 3 5

42

ε

• This “super-state” is the start-state of our DFA.



• The possible states on reading an aaa :

So
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• Explore the super-states of reachable states:

So
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• Explore the super-states of reachable states:

So
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• Explore the super-states of reachable states:

So
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• Explore the super-states of reachable states:

So
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• Explore the super-states of reachable states:

So
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• A super-state is accepting if containing an accept-state:

So

b

b

S

S

3
S2

S4
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ε
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ε
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ε
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ε
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The resulting DFA

• We have constructed from the NFA NNN an equivalent DFA! Each state of the

DFA obtained is a “super-state” of NNN ’s states:



The resulting DFA

• We have constructed from the NFA NNN an equivalent DFA! Each state of the

DFA obtained is a “super-state” of NNN ’s states:
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O/

bb

1,2,3,4

1,2,3,4,5

a

4,5

a,b

a

3,4,5
a

a,b



The resulting DFA

• We have constructed from the NFA NNN an equivalent DFA! Each state of the

DFA obtained is a “super-state” of NNN ’s states:

b

O/

bb

1,2,3,4

1,2,3,4,5

a

4,5

a,b

a

3,4,5
a

a,b

• We labeled here each state as the super-state it represents.

F23 152



Another example

4

3

2

1

b

a b

b

b

a
ε

ε



Another example

4

3

2

1

b

a b

b

b

a
ε

ε



Another example

  1,3 O/ 2

a,b

a,b
a a

a

b b

b

1,2,3,41,3,4
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An exponential explosion

• If NNN has nnn states, then the DfA obtained

may have up to 2n2n2n states.

• Is that necessary?

• No! Consider the language of strings over {a,b,c}{a,b,c}{a,b,c} that miss at least one

letter.

• The smallest DFA recognizing it is



O/

−b,−c −c,−a −a,−b

−a −b

a b c

b a

a b c

−c

a
b

a

cc

b,c
c,aa,b

0,−a,−b,−c
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• But here is a 4-state NFA recognizing it:

−c

0

−a

−bε

ε

ε
b,c

a,c

a,b

• For “missed-som” language over the Latin alphabet

the smalles recognizing automaton has 226 > 67 million states!

• But here is a 27 state NFA recognizing it:



σ = / a

σ = / b

σ = / z

ε

ε

ε
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RECALL: Uniting three definitions

• We’ll see that the following properties of languages are equivalent.

◮ LLL is basic IMPLIES

◮ LLL is recognized by an automaton

◮ LLL is regular

◮ LLL has finitely many residues
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BASIC LANGUAGES ARE RECOGNIZED



Finite languages are recognized

• ∅∅∅ is recognized by an NFA

with one non-accepting state and no transitions.



Finite languages are recognized

• ∅∅∅ is recognized by an NFA

with one non-accepting state and no transitions.

• {ε}{ε}{ε} is recognized by an NFA

with one accepting state and no transitions.



Finite languages are recognized

• ∅∅∅ is recognized by an NFA

with one non-accepting state and no transitions.

• {ε}{ε}{ε} is recognized by an NFA

with one accepting state and no transitions.

• A string abaabaaba is recognized by the NFA

a b a

. Similarly for other strings.
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• A finite language {w1, . . . , wk}{w1, . . . , wk}{w1, . . . , wk} is recognized

by an NFA with εεε -branching to kkk NFAs recognizing

{w1}{w1}{w1} through {wk}{wk}{wk} .



• A finite language {w1, . . . , wk}{w1, . . . , wk}{w1, . . . , wk} is recognized

by an NFA with εεε -branching to kkk NFAs recognizing

{w1}{w1}{w1} through {wk}{wk}{wk} .

• Example {01, 10, 111}{01, 10, 111}{01, 10, 111} is recognized by

ε

ε

0 1

1 0

1 1 1

ε
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The complement of a recognized lang is recognized (reminder)

• As we have seen:

If a language LLL is recognized by DFA MMM , then its complement is recognized

by the DFA M̄̄M̄M
obtained by switching in MMM acceptance and non-acceptance.



The complement of a recognized lang is recognized (reminder)

• As we have seen:

If a language LLL is recognized by DFA MMM , then its complement is recognized

by the DFA M̄̄M̄M
obtained by switching in MMM acceptance and non-acceptance.

• Note: This idea doesn’t work for NFAs:

N:

a

a

N:

a

a

NFA NNN accepts aaa and so does N̄̄N̄N .
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The intersection of recognized languages is recognized (re-
minder)

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y



The intersection of recognized languages is recognized (re-
minder)

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

and

• M2M2M2 recognizes L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) } .

b# w =   0  mod 2
b

b

aa

0 1



Two automata collaborating

0
a

b b

1 2

b

a

a

b

b

aa

10

b b b b b b

a0

0

a

0

1

aa

a

a

1

0

2

0

2

1

1

1



Conjuctive pairing

• Accepting when both accept:

b b b b b b

b

b

aa

10X Y Z

both accept

aX

0

a

X

1

aa

a

a

Y

0

Z

0

Z

1

Y

1

a

b b b

a

a
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The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).



The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).

• Here’s an NFA MMM that recognizes L0 · L1L0 · L1L0 · L1:

M1M0

s0

M

s1

ε

ε



The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).

• If w = u · vw = u · vw = u · v where u ∈ L0u ∈ L0u ∈ L0 and v ∈ L1v ∈ L1v ∈ L1

then s0
u→ a0

ǫ→ s1
v→ a1s0

u→ a0
ǫ→ s1

v→ a1s0
u→ a0

ǫ→ s1
v→ a1

for some a0 ∈ A0a0 ∈ A0a0 ∈ A0 and a1 ∈ A1a1 ∈ A1a1 ∈ A1 ,

MMM accepts www .



The concatenation of recognized languages is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) where M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)M0 = (Q0, s0, A0, δ0)
and L1 = L(M1)L1 = L(M1)L1 = L(M1) where M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1)M1 = (Q1, s1, A1, δ1).

• Conversely, Suppose www is accepted by MMM , s0
w→ A1s0
w→ A1s0
w→ A1.

The trace starts in Q0Q0Q0 and ends in Q1Q1Q1 ,

so it must have a transition q →pq →pq →p for some q ∈ Q0q ∈ Q0q ∈ Q0 and p ∈ Q1p ∈ Q1p ∈ Q1.

The only such transitions are a ǫ→ s1a ǫ→ s1a ǫ→ s1 for a ∈ A0a ∈ A0a ∈ A0. MMM has no trasitions

from Q1Q1Q1 to Q0Q0Q0 , so the trace must be for s0
u→ a ǫ→ s1

v→ a′s0
u→ a ǫ→ s1

v→ a′s0
u→ a ǫ→ s1

v→ a′ for some

uuu accepted by M0M0M0 and some vvv accepted by M1M1M1 . Hence w = u · v ∈ L0 · L1w = u · v ∈ L0 · L1w = u · v ∈ L0 · L1.
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The plus and star of a recognized language are recognized

• Given a language L = L(M)L = L(M)L = L(M) here’s an NFA M+M+M+ recognizing L+L+L+:

ε

ε

s M0

M+



The plus and star of a recognized language are recognized

• Given a language L = L(M)L = L(M)L = L(M) here’s an NFA M+M+M+ recognizing L+L+L+:

ε

ε

s M0

M+

• Since L∗ = L+ ∪ {ε}L∗ = L+ ∪ {ε}L∗ = L+ ∪ {ε}, L∗L∗L∗ is also recognized.
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Every basic language is recognized

• Induction on the dfn of basic languages. We showed:



Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.



Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.

• Set operations yield recognized languages from recognized languages

(proofs using DFAs)



Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.

• Set operations yield recognized languages from recognized languages

(proofs using DFAs)

• Language operations yield recognized languages from recognized languages

(proofs using NFAs)



Every basic language is recognized

• Induction on the dfn of basic languages. We showed:

• Finite languages are recognized.

• Set operations yield recognized languages from recognized languages

(proofs using DFAs)

• Language operations yield recognized languages from recognized languages

(proofs using NFAs)

• So by induction on basic language every basic language is recognized.
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Uniting three definitions (reminder)

• We’ll see that the following properties of languages are equivalent.

◮ LLL is basic

◮ LLL is recognized by an automaton IMPLIES

◮ LLL is regular

◮ LLL has finitely many residues
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EVERY RECOGNIZED LANGUAGE IS REGULAR



Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c



Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c

a ∪ bca ∪ bca ∪ bc



Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c
d



Getting from here to there

• What strings are leading from X to Y?

X Y

b

a

c
d

a ∪ bd
∗
ca ∪ bd

∗
ca ∪ bd

∗
c



Getting from here to there

• What strings are leading from X to Y?

X Y

b
d

c

e

a



Getting from here to there

• What strings are leading from X to Y?

X Y

b
d

c

e

a

a ∪ b(ce)∗
cda ∪ b(ce)∗
cda ∪ b(ce)∗
cd
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Graphs with reg-exps as labels

◮ Starting with the given NFA,

Collapse labels: eg, replace q
a,b,ǫ
→ pq
a,b,ǫ
→ pq
a,b,ǫ
→ p by q a∪b∪ǫ→ pq a∪b∪ǫ→ pq a∪b∪ǫ→ p

◮ Create a new start state s0s0s0

with an ε-transition to the original start state of NNN .

◮ Create a new state a0a0a0 as the only accepting state,

and create an εεε-transition from each accepting state of NNN to a0a0a0.
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A working example

Text

a1 2

3

b

b b

a
a
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10

b

ε
2 5a

3

b

b

a
a

ε
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0

b

a

b

1

ab*a

3

b

a

a

ε ε
2 5
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0 ε
2 5

b

a

b U  (ab*a)(b)*(a)

1

ab*a

ε

b*a
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0 2

b U  (ab*a)(b)*(a)

5
ε

b*a

b*a (b U  (ab*a)(b)*(a))*

L(N) = L(b∗ ·a·(b ∪ (a·b∗ ·a)·(b)∗ ·(a))∗)
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Another example

a a

b

b

1 2



30
a*b (a U ba*b)*

30

a U ba*b

εa*b
2

0 31

a a

b
ε ε

2

b
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Yet another example

a

b

c

b

c

2

1S

3

a

ε

ε

ε

A

F23 180



a

b

c

b

c

2

1S

3

a

ε

ε

ε

A

b*a

cb*a

F23 181



b

b

2

S

3

a

ε

ε

A

b*a

cb*a

c U ba*cb*a

   U ba*
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b

2

S A

b*a

c U ba*cb*a

(c U ba*cb*a)*b*a  ε(    U ba*)

ε   U ba*

F23 183



AS
(c U ba*cb*a)*b*a  ε(    U ba*)
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The underlying math

• NFAs are not generated from components:

transition rules can go any which way.

• So how can be reason inductively about all NFAs?

• Look closer to what we want to prove:

Given an NFA M = (Q, s, A, ∆)M = (Q, s, A, ∆)M = (Q, s, A, ∆) over an alphabet Σ,

find a regular expression that denotes {w | s w→ A}{w | s w→ A}{w | s w→ A} .

• As was the case for the Unique Parsing Theorem,

we up the ante to make this work.
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Limitting the stepping stones

• For sets T ⊆ QT ⊆ QT ⊆ Q , consider the relation q w(T )w(T )w(T )
−−→ pq w(T )w(T )w(T )
−−→ pq w(T )w(T )w(T )
−−→ p that holds when

www leads from qqq to ppp using only states in TTT .

• In particular q w(Q)w(Q)w(Q)
−−→ pq w(Q)w(Q)w(Q)
−−→ pq w(Q)w(Q)w(Q)
−−→ p means q w→ pq w→ pq w→ p.

• Goal: For states q, pq, pq, p and T ⊆ QT ⊆ QT ⊆ Q {w | q w(T )w(T )w(T )
−−→ p}{w | q w(T )w(T )w(T )
−−→ p}{w | q w(T )w(T )w(T )
−−→ p} is denoted by some

regexp αq→p(T )αq→p(T )αq→p(T ).

• Base: T = ∅T = ∅T = ∅, and αq→p(∅)αq→p(∅)αq→p(∅) must denote the set of σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ

for which q σ→ pq σ→ pq σ→ p is in the transition.

Take the union of those.

• Step: Given TTT and state r 6∈ Tr 6∈ Tr 6∈ T ,

and considering T ∪ {r}T ∪ {r}T ∪ {r},

define αq→p
T+rαq→p
T+rαq→p
T+r in terms of expressions α...

Tα...
Tα...
T .

• We have q w(T+r)w(T+r)w(T+r)
−−−→ pq w(T+r)w(T+r)w(T+r)
−−−→ pq w(T+r)w(T+r)w(T+r)
−−−→ p iff either q w(T )w(T )w(T )

−−→ pq w(T )w(T )w(T )
−−→ pq w(T )w(T )w(T )
−−→ p or w = u · x1 · · · · · xk · v,w = u · x1 · · · · · xk · v,w = u · x1 · · · · · xk · v,

where q u(T )u(T )u(T )
−−→ r x1(T )x1(T )x1(T )

−−→ r · · · xk(T )xk(T )xk(T )
−−→ r v(T )v(T )v(T )

−−→ pq u(T )u(T )u(T )
−−→ r x1(T )x1(T )x1(T )

−−→ r · · · xk(T )xk(T )xk(T )
−−→ r v(T )v(T )v(T )

−−→ pq u(T )u(T )u(T )
−−→ r x1(T )x1(T )x1(T )

−−→ r · · · xk(T )xk(T )xk(T )
−−→ r v(T )v(T )v(T )

−−→ p
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• So define αq→p
T+r = αq→p

T ∪ αq→r
T · (αr→r

T )∗ · αr→p
Tαq→p

T+r = αq→p
T ∪ αq→r

T · (αr→r
T )∗ · αr→p

Tαq→p
T+r = αq→p

T ∪ αq→r
T · (αr→r

T )∗ · αr→p
T

• One concern: to preserve info about acceptance we should not

eliminate the start state or any accepting state.

• Solution:

1. New start s0s0s0 with s0
ǫ→ ss0
ǫ→ ss0
ǫ→ s;

2. New unique accept a0a0a0 with a ǫ→ a0a ǫ→ a0a ǫ→ a0 for each a ∈ Aa ∈ Aa ∈ A.

3. Now L(N) = αs0→a0
QL(N) = αs0→a0
QL(N) = αs0→a0
Q . QED

• We showed an algorithmic implementation of the construction above.
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TWO-WAY DFAs



A stronger read-only deterministic device

• Consider the language LLL over [a − z]

of words that include all letters.

No English word is in LLL, but probably every book.

• LLL is a regular language: it is the intersection

of the 26 languages {w | w{w | w{w | w has σ}σ}σ} for σ = a,b...σ = a,b...σ = a,b....

• The smallest DFA that recognizes LLL
has > 226 > 67, 000, 000> 226 > 67, 000, 000> 226 > 67, 000, 000 states.

• The smallest NFA recognizing LLL has 27 states.

• Is there a deterministic algorithm

that does it with a manageable number of states?
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A deterministic algorithm for the all-letters problem

• Algorithm: Scan for each digit separately, and repeat.

• This cannot be done if we only read forward!

The cursor would have to be scrolled back (or repositioned).

• SO let’s imagine a device that behaves just like an automaton,

but can move the cursor both ways.
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Some challenges

• Symbol read determines not only next state,

but also next move: forward or backward.

• To detect the ends of the input string it must have end-markers,

say >>> (the gate ) on the left,

and ⊔⊔⊔ (the blank ) on the right.

• Termination is not by reading through,

but needs to be declared by a final accept state.

(We need not guarantee termination.)
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Two-way automata

A two-way automaton (2DFA) over an alphabet Σ:

• Finite set of states QQQ

• s ∈ Qs ∈ Qs ∈ Q, the initial state

• a ∈ Sa ∈ Sa ∈ S, the accepting state

• Transition partial-function: δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.

• Write q
σ(α)
→ pq
σ(α)
→ pq
σ(α)
→ p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉
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Two-way automata

• δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.

• Write q
σ(α)
→ pq
σ(α)
→ pq
σ(α)
→ p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉

The intent:

• ΓΓΓ end-markers >>> (gate) and ⊔⊔⊔ (blank) added to ΣΣΣ

• Example: Input 001201001201001201 appears as >001201⊔>001201⊔>001201⊔

• The actions +++ and −−− stand for “step forward” and “step back.”
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Example: The strings using all of a,b,c

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

• With 26 in place of 3 we’d have 53 states,

as opposed to > 67, 000, 000> 67, 000, 000> 67, 000, 000 states in the smallest DFA!

F23 194



Operation of 2DFAs: configurations

• For DFAs we could generate the relation p w→ qp w→ qp w→ q
inductively, as a function of www.

• This is no longer the case for 2DFAs:

here we must account for the cursor position

and keep record of the entire input for future use.

• A cursored-string over ΣΣΣ is a Σ−Σ−Σ−string with one underlined symbol-

position.

• A configuration (cfg) is a pair (q, w̌)(q, w̌)(q, w̌) where

◮ qqq is a state, and

◮ w̌̌w̌w is a cursored-string,

That is, ((( state, cursored-string ))).

• Example: (q, >0101100⊔)(q, >0101100⊔)(q, >0101100⊔)

• The initial cfg for input www is the cfg (s, >w ⊔)(s, >w ⊔)(s, >w ⊔).
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The YIELD relation

• The Yield relation ⇒⇒⇒
(or ⇒M⇒M⇒M when it matters which MMM ) is obtained by:

•

◮ If q
γ (+)
→ pq

γ (+)
→ pq

γ (+)
→ p

then (q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)

◮ If q
γ (−)
→ pq

γ (−)
→ pq

γ (−)
→ p

then (q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)

◮ Nothing else

• If the given cfg is (q, 011010)(q, 011010)(q, 011010),

and q
0(+)
→ pq
0(+)
→ pq
0(+)
→ p, then the transition above does not apply.

The same holds when invoking a transition q
0(−)
→ pq
0(−)
→ pq
0(−)
→ p

for a configuration with a cursor at the head of the string, such as (q, 011010)(q, 011010)(q, 011010).
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Traces, acceptance, recognition

• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no transition applies (no yield).

It is a accepting its state is accepting state aaa.

• A trace of MMM for input www
is a sequence of

c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·

where c0c0c0 is initial for www, and either

1. the sequence is infinite; or

2. the sequence is finite, and its last cfg is terminal.

• The trace is accepting if it is finite

and its last cfg is accepting.

• MMM accepts w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

if it its trace for input www is accepting.

• The language recognized by MMM is

L(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | M accepts w }w }w }
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Example

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

Accepting trace for trace of MMM above for w = bcabw = bcabw = bcab:

( 1, >bcab⊔ )( 1, >bcab⊔ )( 1, >bcab⊔ )

⇒ ( 2, >bcab⊔ )⇒ ( 2, >bcab⊔ )⇒ ( 2, >bcab⊔ )

⇒ ( 2, >bcab⊔ )⇒ ( 2, >bcab⊔ )⇒ ( 2, >bcab⊔ )

⇒ ( 2, >bcab⊔ )⇒ ( 2, >bcab⊔ )⇒ ( 2, >bcab⊔ )

⇒ ( 3, >bcab⊔ )⇒ ( 3, >bcab⊔ )⇒ ( 3, >bcab⊔ )

⇒ ( 3, >bcab⊔ )⇒ ( 3, >bcab⊔ )⇒ ( 3, >bcab⊔ )

⇒ ( 3, >bcab⊔ )⇒ ( 3, >bcab⊔ )⇒ ( 3, >bcab⊔ )

⇒ ( 4, >bcab⊔ )⇒ ( 4, >bcab⊔ )⇒ ( 4, >bcab⊔ )

⇒ ( 5, >bcab⊔ )⇒ ( 5, >bcab⊔ )⇒ ( 5, >bcab⊔ )

⇒ ( 6, >bcab⊔ )⇒ ( 6, >bcab⊔ )⇒ ( 6, >bcab⊔ )

⇒ ( 6, >bcab⊔ )⇒ ( 6, >bcab⊔ )⇒ ( 6, >bcab⊔ )

⇒ ( 7, >bcab⊔ )⇒ ( 7, >bcab⊔ )⇒ ( 7, >bcab⊔ )
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( 1, >bcab⊔ )( 1, >bcab⊔ )( 1, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 2, >bcab⊔ )( 2, >bcab⊔ )( 2, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 2, >bcab⊔ )( 2, >bcab⊔ )( 2, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 2, >bcab⊔ )( 2, >bcab⊔ )( 2, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 3, >bcab⊔ )( 3, >bcab⊔ )( 3, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 3, >bcab⊔ )( 3, >bcab⊔ )( 3, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 3, >bcab⊔ )( 3, >bcab⊔ )( 3, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 4, >bcab⊔ )( 4, >bcab⊔ )( 4, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 5, >bcab⊔ )( 5, >bcab⊔ )( 5, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 6, >bcab⊔ )( 6, >bcab⊔ )( 6, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 6, >bcab⊔ )( 6, >bcab⊔ )( 6, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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( 7, >bcab⊔ )( 7, >bcab⊔ )( 7, >bcab⊔ )

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7
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Two-way automata recognize just
regular languages!

• Yet another characterization of regular languages!

• Adding nondeterminism to 2DFA still recognizes just regular languages!

• We still avoid extensible memory, so this is not a big surprise.
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Proof outline

• DFA recognize languages with finitely many residues L/wL/wL/w.

• For each www a finite amount of info suffices to decide x ∈ L/wx ∈ L/wx ∈ L/w.

• For DFA the info is the state qqq reached: s w→ qs w→ qs w→ q .

• For 2DFA the scan might cross out of www and into xxx .

back in, and then out again into xxx.

• This is the info needed about www:

If the reading cross back into www in a state

• The extra info:

the pairs (in, out)(in, out)(in, out) of states

s.t. crossing back into w in state in

leads to crossing back out in state out.



u

p1

p0

xσ

w

s

position read

time
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Every language recognized by a is regular!

• Say that 〈p0, p1〉〈p0, p1〉〈p0, p1〉 is a back-crossing pair.

• L/wL/wL/w is determined by qqq reached by reading www,

plus the set of back-crossing pairs for www:

if w, w′w, w′w, w′ reach the same state,

and have the same crossing pairs, then L/w = L/w′L/w = L/w′L/w = L/w′.



s

p0

p1

p2

s

a
time time

p0

p1

p2

a

q

p3

position read position read

q

p3

in xx in

w x w’ x

L/w L/w’IFF



• For MMM with kkk states

there are k2k2k2 potential back-crossing pairs,

and so 2k2
2k2
2k2

possible descriptions of the situation at the border.

• Finitely many residues, albeit a lot, but still

recognizing a regular language!
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