Fall 2022 © Daniel Leivant

Strings and languages

Aug 2022

- 1. For each of the following inequalities give an example of languages L for which the inequality holds.
 - (a) $(L^2)^* \neq (L^*)^2$. (Hint: One letter suffice)
 - (b) $L \cdot L^* \neq L^*$. Solution. Let $L = \{a\}$. Then $\varepsilon \in L^*$ but $\varepsilon \notin L \cdot L^*$.
- 2. For each of the following inequalities give an example of languages L, M for which the inequality holds.
 - (a) $L \cdot M \neq M \cdot L$. Solution. Let $L = \{0\}$ and $M = \{1\}$. Then $L \cdot M = \{01\} \neq \{10\} = M \cdot L$.
 - (b) L⁺ · L⁺ ≠ L⁺.
 Solution. Let L = {1}. Then 1 ∈ L⁺ but 1 ∉ L⁺ · L⁺ since all strings in L⁺ · L⁺ have length ≥ 2.
 - (c) $(L \cdot M)^* \neq L^* \cdot M^*$.

Solution. Let $L = \{0\}$ and $M = \{1\}$. Then $0101 = 01 \cdot 01 \in (L \cdot M)^*$ but $0101 \notin L^* \cdot M^*$ since no string in $L^* \cdot M^*$ can have 1 preceding 0.

An even simpler example: $(\emptyset \cdot \{1\})^* = \emptyset^* = \{\varepsilon\}$ but $\emptyset^* \cdot \{1\}^* = \{\varepsilon\} \cdot \{1\}^* = \{1\}^*$.

3. Prove that $L^* \cdot L^* = L^*$ for all languages *L*.

Solution. We have $\varepsilon \in L^*$ so $L^* \cdot L^* \supseteq \{\varepsilon\} \cdot L^* = L^*$. To prove that $L^* \cdot L^* \subseteq L^*$ suppose $w \in L^* \cdot L^*$, that is $w = u \cdot v$ for some $u, v \in L^*$. By the definition of L^* we have then $u \in L^i$ and $v \in L^j$ for some $i, j \ge 0$. But then $w = u \cdot v \in L^i \cdot L^j = L^{i+j} \subseteq L^*$.

4. Prove that $L^+ \cdot L^+ \subset L^+$ for all languages L.

Solution. Suppose $w \in L^+ \cdot L^+$, that is $w = u \cdot v$ for some $u, v \in L^+$. By the definition of L^+ we have then $u \in L^i$ and $v \in L^j$ for some $i, j \ge 1$. But then $w = u \cdot v \in L^i \cdot L^j = L^{i+j} \subseteq L^+$, since i+j > 0.

5. For any non-empty language L, $L^+ \subseteq L^+ \cdot L^+$ iff $\varepsilon \in L$.

Solution. Let L be non-empty.

If $\varepsilon \in L$ then $\varepsilon \in L^+$, since $L \subseteq L^+$ by the definition of L^+ . So $L^+ = \{\varepsilon\} \cdot L^+ \subseteq L^+ \cdot L^+$. Conversly, if $\varepsilon \notin L$, let w be a string in L^+ of shortest length. Such w exists, since L is not empty, and is not ε by assuptiojn. The minimal length of strings in $L^+ \cdot L^+$ is thus 2|w|, which is > |w|, because $w \neq \varepsilon$. So $w \in L^+$ but $w \notin L^+ \cdot L^+$. 6. Prove that $(L^+)^+ = L^+$ for all languages L.

Solution. For any language M we have $M \subseteq M^+$, by the definition of M^+ , so $L^+ \subseteq (L^+)^+$.

To prove that $(L^+)^+ \subseteq L^+$ take $w \in (L^+)^+$. By the definition of $+, w \in (L^+)^n$ for some n > 0. Since $L^+ \cdot L^+ \subseteq L^+$ (proved above), we have $(L^+)^n = L^+ \cdots L^+$ (*n* times) $\subseteq L^+$. So $w \in L^+$.

The latter argument can be articulated by referring to strings rather than languages.

If $w \in (L^+)^+$ then $w = u_1, \ldots, u_k \in L^+$ for some $u_1, \ldots, u_k \in L^+$. Each u_i is $v_{i1} \cdots v_{in_i}$ for some $v_{i1} \ldots v_{in_i} \in L$. So

 $w = u_{11} \cdots u_{1n_1} \cdot u_{21} \cdots u_{2n_2} \cdots u_{k1} \cdots u_{kn_k}$

which is a string in L^+ .

7. Give an example of a Σ -language L for which $(L^2)^* \neq (L^*)^2$.