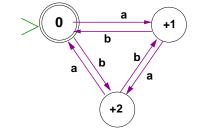
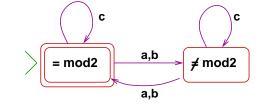
Automata

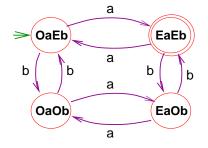

Sep 2022

Most DFA-diagrams have states labeled with text, recording the development of the DFA. You may disregard these labels.

(Practice) Let Σ = {a, b}. Construct a 3-state automaton that recognizes the language

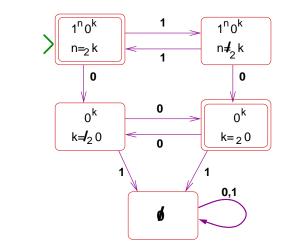

 $w \in \Sigma^* \mid \overset{\circ}{\#}_a(w) \equiv_3 \overset{\circ}{\#}_b(w).$

Solution.

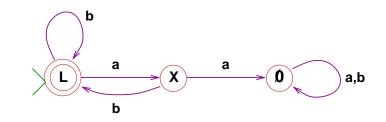


- 2. For each of the following languages construct an automaton that recognizes it.
 - (a) (Practice) $\{w \in \{a, b, c\}^* \mid \#_a(w) = \#_b(w) \mod 2\}$

Solution.

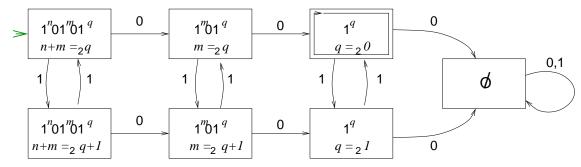


(b) $\{w \in \{a, b\}^* \mid \#_a(w) \text{ odd and } \#_b(w) \text{ even } \}$

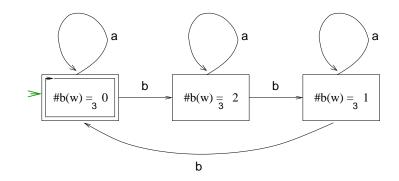


(c) (Practice) $\{1^n 0^m \mid n = m \mod 2\}.$

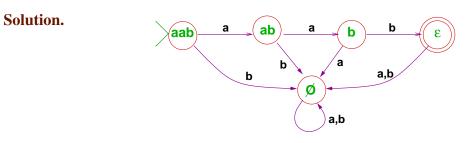
Solution.



(d) (Practice) $\{w \in \{a, b\}^* \mid \text{every substring aa in } w \text{ is followed by a } b\}$

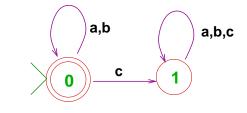

(e) $\{1^n 0 1^m 0 1^q \mid n+m \equiv q \mod 2\}$

Solution.

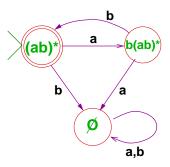


3. For a decimal numeral $w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^*$ let $[w]_{10}$ be the number denoted by w and $\Sigma(w)$ the sum of its digits. For example, for w = 124 $[w]_{10} = 124$ and $\Sigma(w) = 7$. It is know that $[w]_{10} \equiv \Sigma(w) \mod (3)$.

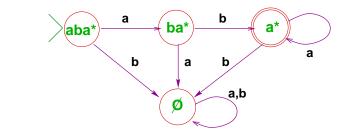
Construct an automaton that recognizes the language $\{w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* \mid [w]_{10} \text{ is divisible by 3 }\}.$



4. (Practice) $L = \{aab\}, \Sigma = \{a, b\}.$


5. $L = \{a, b\}^*, \Sigma = \{a, b, c\}.$

Solution.



6. (Practice) $L = {ab}^*$

Solution.

7. (Practice) $L = \{ aba^n \mid n \ge 0 \}$

8. (a) Construct an automaton that recognizes the language

 $L = \{w \in \{\mathtt{a}, \mathtt{b}\}^* \mid \#_b(w) \text{ is divisible by 3} \}$

(b) Give the computation-trace of your automaton for the strings **aba** and **bbab**.