Assignment 12: PTime reductions and NP-completeness

- **A**. For each of the following determine whether it is true, and explain your answer.
 - (i) If L is NP and L ≤_p L' then L' is NP.
 Solution. False. Let K be a non-NP language (for example an undecidable language). Take L' = L ⊕ K. Then L ≤_p L', but L' is not NP since K ≤_p L'.
 - (ii) If L is NP-hard and $L \leq_p L'$ then L' is NP-hard. Solution. True. If L is NP-hard then (by dfn) every NP-problem is $\leq_p L$. By transitivity of \leq_p , every NP problem is $\leq_p L'$.
- **B**. (20%) **TWICE-SAT**: Given a boolean expression E, is it satisfied by at least two different valuations.

Given that **BOOL-SAT** is NP-hard, prove that **TWICE-SAT** is NP-complete.

Solution.

TWICE-SAT is NP: A certificate for an instance E is a pair of different valuations, each satisfying E. The certificate is of size linear in |E|, and can be checked in linear time.

TWICE-SAT is NP-hard: Since **BOOL-SAT** is NP-hard, it suffices to define a PTime-reduction ρ : **BOOL-SAT** \leq_p **TWICE-SAT**. Let ρ map an instance E of **BOOL-SAT** to $E \land (y \leftrightarrow z)$ where y, z are fresh variables. $(y \leftrightarrow z)$ can be expressed as $(y \land z) \lor (-y \land -z)$.) ρ is trivially PTime.

It is a reduction: If E is satisfiable by a valuation V then $\rho(E)$ is satisfied by V extended with $y, z \mapsto 0$ as well as V extended with $y, z \mapsto 1$.

Conversely, if $\rho(E)$ is satisfied (let alone satisfied twice) then E, being a conjunct of $\rho(E)$, must be satisfied.

C. Consider the decision-problem

3OCCUR-SAT: Given a boolean expression E with every variable occurring at most three times, is E satisfiable.

Show that this problem is NP-hard by reducing **BOOL-SAT** to it.

Solution. Define ρ : BOOL-SAT \leq_p **3OCCUR-SAT** as follows. Given an expression E with variables $x_1 \dots x_k$ replace for each $i \in [1..k]$ the occurrences of x_i with fresh distinct variables $x_{i1}, x_{i2} \dots x_{im_i}$, one for each occurrence of x_i . (m_i is the number of occurrences of x_i). This yields an expression E' where every variable occurs only once.

Now let $\rho(E)$ be E' conjuncted with the expressions asserting that all "copies" x_{ij} of x_i are equivalent, that is all expressions $x_{i1} \rightarrow x_{i2}$, $x_{i2} \rightarrow x_{i3}$, ..., $x_{im_i} \rightarrow x_{i1}$. By its definition, E' has each variable occurring exactly three times. (If implications are to be avoided, we can just write $-a \lor b$ for $a \rightarrow b$.)

 ρ is clearly computable in PTime. It is a reduction:

If *E* has a satisfying valuation *V* then *V'* defined by $V'(x_{ij}) = V(x_i)$ satisfies $\rho(E)$.

Conversely, if E' has a satisfying valuation V then V must assign, for each i, the same boolean value to all variables x_{ij} . So E is satisfied by the valuation V that to x_i assigns the value $V(x_{i1}) = \cdots = V(x_{im_i})$.

(35%) Given a boolean expression E with an even number of variables, say that a valuation V is *balanced* for F if it assigns 1 to half of the variables and 0 to the rest.

BALANCED-SAT: Given a boolean expression E with an even number of variables is it satisfied by some balanced valuation V.

Given that **BOOL-SAT** is NP-hard, prove that **BALANCED-SAT** is NP-complete. [Hint: For a single-variable expression E[x] you would conjunct E[x] with E[-y].]

2. (35%) A *weighted digraph* is a digraph with each edge assigned a positive integer (its "weight"). The *weight of a path* is the sum of its edges' weights.

Consider the problem **WEIGHTED-PATH**:

Given a weighted digraph G and a target integer t > 0 does G have a path, without repeated vertices, of weight $\ge t$.

Define a PTime reduction of HAMILTONIAN-PATH to WEIGHTED-PATH.

D. Recall the decision-problem

HAMILTONIAN-PATH (HP): Given a directed graph G, does it have a Hamiltonianpath (H-path), i.e. a path visiting every vertex once.

The **HAMILTONIAN-CYCLE (HC)** decision-problem asks the same question for a *cycle*, i.e. a closed loop.

(i) Define a reduction ρ : HC \leq_p HP.

Solution. Given a digraph G = (V, E) Choose any vertex $v \in V$. Let $G' = \rho(G)$ be G with v split into two vertices v_{in} and v_{out} . v_{in} inherits the incoming edges of v, and v_{out} the outgoing edges of v.

 ρ is computed in PTime trivially.

Suppose G has a H-cycle. $v \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v$. Then $v_{out} \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v_{in}$ is a H-path in G'.

Conversely, if G' has a H-path then the path's first vertex must be v_{out} (which has no incoming edges) and it must end at v_{in} (which has no outgoing edges). So $v \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v$ is a H-cycle in G.

(ii) Define a reduction ρ : HP \leq_p HC.

Solution. Let ρ map an instance G of HP to the di-graph G' obtained by adding to G a new vertex v, and for each vertex u of G an edge from v to u and an edge from u to v.

 ρ is clearly computable in PTime. To show that it is a reduction, assume G has a Hamiltonian path u_1, \dots, u_k . Then v, u_1, \dots, u_k, v is a Hamiltonian cycle in G'.

Conversely, if there is a Hamiltonian cycle in G', it can be listed starting with $v: v, u_1, \ldots, u_k, v$. Then u_1, \cdots, u_k is a Hamiltonian path in G.

3. (35%) **TWO-CLIQUES**: Given an undirected graph G and a target t > 0, does G have two disjoint cliques of size $\geq t$.

Given that **CLIQUE** is NP-hard, prove that **TWO-CLIQUES** is NP-complete.