B501, Fall 2024 © Daniel Leivant 2024

Assignment 11: Computable reductions

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

A. The problem COMMON-ACCEPT asks whether a given pair (M_0, M_1) of Turing acceptors accept a common string.

A decidable certification for **COMMON-ACCEPT** has $c \vdash (M_0, M_1)$ iff c is a pair (t_0, t_1) where t_0 and t_1 are accepting traces of M_0 and M_1 , respectively, for the same input string. So **COMMON-ACCEPT** is SD.

- (i) Define a computable reduction of ε-ACCEPT to COMMON-ACCEPT.
 Solution. Let ρ map an instance M of ε-ACCEPT to the instance (E, M) of COMMON-ACCEPT, where E is an acceptor for the singleton language {ε}. Then M accepts ε iff {ε} = L(E) ⊆ L(M), i.e. ρ is a reduction. ρ is computable trivially.
- (ii) Conclude that COMMON-ACCEPT is not decidable. (This cannot be proved by invoking Rice's Theorem as we stated it, because the instances are here *pairs* of acceptors.)

Solution. Since ε -ACCEPT is undecidable and computably-reducible to COMMON-ACCEPT it follows that the latter is undecidable as well.

- 1. (60%) The problem SUBLANG asks whether a given pair (M, M') of Turing acceptors satisfies $\mathcal{L}(M) \subseteq \mathcal{L}(M')$.
 - (a) Define a computable reduction of ε -ACCEPT to SUBLANG.

Solution. Fix an acceptor E for the singleton language $\{\varepsilon\}$. Let ρ be a function that maps an instance M of ε -ACCEPT to the instance (E, M) of **SUBLANG**. ρ is clearly computable, as a purely syntactic program modification. M accepts ε iff $\{\varepsilon\} \subseteq \mathcal{L}(M)$, that is iff $\rho(M^{\#}) = (E, M) \in \text{SUBLANG}$, so ρ is a reduction. It is trivially com-

 $p(M^*) = (E, M) \in \text{SUBLANO}$, so p is a reduction. It is urvially computable.

- (b) Define a computable reduction of *e*-NONACCEPT to SUBLANG.
 - **Solution.** Given as input an instance $M^{\#}$ of ε -NONACCEPT let $\rho(M^{\#})$ be the instance (M, P) of SUBLANG where P is an acceptors recognizing Σ^+ . Then M fails to accept ε iff $\mathcal{L}(M) \subseteq \Sigma^+$, i.e. iff (M, P) satisfies SUBLANG. ρ is trivially computable.
- (c) Conclude that neither SUBLANG nor its complement are SD. (You may use the fact that ε-NONACCEPT is not SD, as proved in class).
 Solution. By (a) SUBLANG is not SD. And by (i) the complement of SUBLANG reduces to ε-NONACCEPT, so that complement is not SD either.

- (40%) Let Σ = {a,b}. For Σ-languages L, L' define L ⊕ L' =_{df} {a}·L ∪ {b}·L'. (The definition given later in class is slightly different. Hopefully you don't find this confusing.)
 - (a) Define computable reductions ρ: L ≤_c L ⊕ L' and ρ': L' ≤_c L ⊕ L'.
 Solution. Let ρ(w) = a ⋅ w. This is trivially computable, and we have w ∈ L iff a ⋅ w ∈ L ⊕ L' by the definition of ⊕. Similarly, let ρ(w) = b ⋅ w.
 - (b) Suppose L is SD but not decidable. Prove that L ⊕ L
 is neither SD nor co-SD.
 Solution. Since L is SD but not decidable, its complement L
 is not SD, or else L
 would be decidable. Since L
 ≤_c L ⊕ L
 it follows that L ⊕ L
 is not SD either, or else L
 would be SD.
 The complement of L ⊕ L
 = aL ∪ bL
 is {ε} ∪ bL ∪ aL
 , to which L
 c-reduce as in (a). So the complement of L ⊕ L
 is not SD either, i.e.
 L ⊕ L
 is not co-SD.