B501, Fall 2024 © Daniel Leivant 2024

Assignment 11: Computable reductions

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

A. The problem COMMON-ACCEPT asks whether a given pair (M_0, M_1) of Turing acceptors accept a common string.

A decidable certification for **COMMON-ACCEPT** has $c \vdash (M_0, M_1)$ iff c is a pair (t_0, t_1) where t_0 and t_1 are accepting traces of M_0 and M_1 , respectively, for the same input string. So **COMMON-ACCEPT** is SD.

- (i) Define a computable reduction of ε-ACCEPT to COMMON-ACCEPT.
 Solution. Let ρ map an instance M of ε-ACCEPT to the instance (E, M) of COMMON-ACCEPT, where E is an acceptor for the singleton language {ε}. Then M accepts ε iff {ε} = L(E) ⊆ L(M), i.e. ρ is a reduction. ρ is computable trivially.
- (ii) Conclude that COMMON-ACCEPT is not decidable. (This cannot be proved by invoking Rice's Theorem as we stated it, because the instances are here *pairs* of acceptors.)

Solution. Since ε -ACCEPT is undecidable and computably-reducible to COMMON-ACCEPT it follows that the latter is undecidable as well.

- 1. The problem SUBLANG asks whether a given pair (M, M') of Turing acceptors satisfies $\mathcal{L}(M) \subseteq \mathcal{L}(M')$.
 - (a) Define a computable reduction of ε -ACCEPT to SUBLANG.
 - (b) Define a computable reduction of ε -NONACCEPT to SUBLANG.
 - (c) Conclude that neither **SUBLANG** nor its complement are SD. (You may use the fact that ε -NONACCEPT is not SD, as proved in class).
- 2. Let $\Sigma = \{a, b\}$. For Σ -languages L, L' define $L \oplus L' =_{df} \{a\} \cdot L \cup \{b\} \cdot L'$.
 - (a) Define computable reductions $\rho : L \leq_c L \oplus L'$ and $\rho' : L' \leq_c L \oplus L'$.
 - (b) Suppose \overline{L} is SD but not decidable. Prove that $\underline{L} \oplus \overline{L}$ is neither SD nor co-SD.