B501, Fall 2024 © Daniel Leivant 2024

PDAs, Chomsky's Hierarchy

In this assignment, "**construct directly a PDA**" means that no auxiliary stack symbols are used other than the bottom-marker. This implies that you cannot construct your PDA by converting a CFG to it.

Unless otherwise stated, Σ will denote the alphabet $\{a, b\}$.

- 1. (20%) For each of the following statements about languages $L, M, R \subseteq \Sigma^*$ determine whether it is always true, and justify your answer.
 - (i) If L is CF and R regular, then L R is CF.
 - **Solution.** True. The complement \overline{R} of R must be regular, and so $L R = L \cap \overline{R}$ must be CF, as the intersection of a CFL and a regular language.
 - (a) If R is regular and L CF, then R L is regular.
 - (b) If **R** and **R'** are regular and **L** is CF then $(\mathbf{R} \cdot \mathbf{L}) \cup (\mathbf{R'} \cdot \mathbf{L})$ is CF.
- A. For a string $w \in \{a, b, \#\}^*$ let $w^{\#}$ be the initial substring of w through the first occurrence of #, if there is one. For example, if w = baa#aba#a then $w^{\#} = baa\#$ and if w = abb then $w^{\#} = abb$. For a language $L \subseteq \{a, b, \#\}^*$ define $L^{\#} =_{df} \{w^{\#} \mid w \in \{a, b, \#\}^*\}$.

Show that if L is a CFL then so is $L^{\#}$.

Solution. Given a CFL L consider a PDA P recognizing L, with f as accepting state. We may assume that f is a terminal state, i.e. there are no transitions of the form $f \xrightarrow{\sigma(\alpha \to \beta)} q$. Let $P^{\#}$ be the PDA P with each transition of the form $q \xrightarrow{\#(\alpha \to \beta)} p$ replaced by $q \xrightarrow{\#(\alpha \to \beta)} f$. Then $P^{\#}$ is a PDA that recognizes $L^{\#}$. So $L^{\#}$ is a CFL.

(i) Construct directly a PDA that recognizes the language $L = \{a^i c(ab)^i \mid i \ge 0\}$.

Solution. *L* is recognized by the following PDA *M*. *M* pushes ab's on the for each consecutive a it reads. On reading c *M* switches to a phase that pops an a for every a read and a b for each b read. With states $\{s, q, p_0, p_1, f\}$, *s* being initial and *f* accepting, the transition rules are:

$s \xrightarrow{\epsilon \ (\epsilon ightarrow \$)} q$	$p_0 \xrightarrow{a (a \to \epsilon)} p_1$
$q \xrightarrow{a (\epsilon \rightarrow a)} q$	$p_1 \xrightarrow{b(\epsilon \to \epsilon)} p_0$
$q \xrightarrow{c \ (\epsilon \to \epsilon)} p_0$	$p_0 \xrightarrow{\epsilon (\$ ightarrow \$)} f$

(ii) The obvious CFG G to generate L is $S \rightarrow a S ab \mid c$. Convert G into another PDA that recognizes L.

Solution. With initial state s and accepting state f:

$$s \xrightarrow{\epsilon(\epsilon \to S\$)} q \qquad q \xrightarrow{\epsilon(S \to c)} q \qquad q \xrightarrow{b(b \to \epsilon)} q$$
$$q \xrightarrow{\epsilon(S \to aSab)} q \qquad q \xrightarrow{a(a \to \epsilon)} q \qquad q \xrightarrow{\epsilon(\$ \to \epsilon)} f$$

- **2.** (20+20%)
 - (a) Construct directly a PDA that recognizes the language $L = \{ a^{p+q} b^q c^p \mid p, q \ge 0 \}.$
 - (b) Define a CFG that generates L, and then convert it into another PDA N that recognizes L, different from the one in (a).
- 3. (20%) For this problem read the revised slides for Chomsky's Hierarchy.

Let L be the language $L = \{ a^p b^q c^p d^q \mid p, q > 0 \}$. Show that L is context-sensitive.

[Hint: Define a non-contracting grammar that generates L, using the same approach as the one used for $a^n b^n c^n$ in the slides.]

B.