PDAs, Chomsky's Hierarchy

In this assignment, "construct directly a PDA" means that no auxiliary stack symbols are used other than the bottom-marker. This implies that you cannot construct your PDA by converting a CFG to it.

Unless otherwise stated, Σ will denote the alphabet $\{a,b\}$.

- 1. (20%) For each of the following statements about languages $L, M, R \subseteq \Sigma^*$ determine whether it is always true, and justify your answer.
 - (i) If L is CF and R regular, then L-R is CF. Solution. True. The complement \bar{R} of R must be regular, and so $L-R=L\cap \bar{R}$ must be CF, as the intersection of a CFL and a regular language.
 - (a) If R is regular and L CF, then R L is regular. **Solution.** False. Σ^* is regular, but $\Sigma^* - L$, i.e. the complement of the CFL L, need not be CF.
 - (b) If R and R' are regular and L is CF then $(R \cdot L) \cup (R' \cdot L)$ is CF. **Solution.** True, since every regular language is CF, and the collection of CFLs is closed under concatenation and union.

Note: The initial phrasing of this problem asked about the *intersection* $(R \cdot L) \cap (R' \cdot L)$, with the intent that the presumably equivalent languagae $(R \cap R') \cdot L)$ is CF, since it is the intersection of a CF and a refular language, However, that premise is false, since concatenation does *not* in general distribute over intersection. Consider $R = \{a\}$, $R' = \{aa\}$ and $L = \{a, aa\}$. More generally, if $u \neq v$ while $u \cdot v = v \cdot u$ then $\{u\} \cdot \{v\} = \emptyset\}$ but $u \cdot v$ is in both $\{u\} \cdot \{u, v\}$ and $\{v\} \cdot \{u, v\}$.

A. For a string $w \in \{\mathbf{a}, \mathbf{b}, \#\}^*$ let $w^\#$ be the initial substring of w through the first occurrence of #, if there is one. For example, if $w = \mathbf{baa}\#\mathbf{aba}\#\mathbf{a}$ then $w^\# = \mathbf{baa}\#$ and if $w = \mathbf{abb}$ then $w^\# = \mathbf{abb}$. For a language $L \subseteq \{\mathbf{a}, \mathbf{b}, \#\}^*$ define $L^\# =_{\mathrm{df}} \{w^\# \mid w \in \{\mathbf{a}, \mathbf{b}, \#\}^*\}$.

Show that if L is a CFL then so is $L^{\#}$.

Solution. Given a CFL L consider a PDA P recognizing L, with f as accepting state. We may assume that f is a terminal state, i.e. there are no transitions of the form $f \xrightarrow{\sigma(\alpha \to \beta)} q$. Let $P^{\#}$ be the PDA P with each transition of the form $q \xrightarrow{\#(\alpha \to \beta)} p$ replaced by $q \xrightarrow{\#(\alpha \to \beta)} f$. Then $P^{\#}$ is a PDA that recognizes $L^{\#}$. So $L^{\#}$ is a CFL.

B. (i) Construct directly a PDA that recognizes the language $L = \{a^i c(ab)^i \mid i \ge 0\}$.

Solution. L is recognized by the following PDA M. M pushes ab's on the for each consecutive a it reads. On reading c M switches to a phase that pops an a for every a read and a b for each b read.

With states $\{s, q, p_0, p_1, f\}$, s being initial and f accepting, the transition rules are:

(ii) The obvious CFG G to generate L is $S \to aSab \mid c$. Convert G into another PDA that recognizes L.

Solution. With initial state s and accepting state f:

- **2.** (20+20%)
 - (a) Construct directly a PDA that recognizes the language

$$L = \{ \mathbf{a}^{p+q} \mathbf{b}^q \mathbf{c}^p \mid p, q \geqslant 0 \}.$$

Solution. $Q = \{s, q, r, f\}, \Gamma = \{a, b, c, \$\}$; initial state s; accepting states $A = \{s, f\}$.

(b) Define a CFG that generates L, and then convert it into another PDA N that recognizes L, different from the one in (a).

Solution. Let G have the productions $S \to aSc \mid T$, $T \to aTb \mid \varepsilon$. The initial nonterminal is S.

$$s \xrightarrow{\epsilon(\epsilon \to S\$)} q$$

$$q \xrightarrow{\epsilon(S \to aSc)} q$$

$$q \xrightarrow{\epsilon(S \to T)} q$$

$$q \xrightarrow{\epsilon(T \to aTb)} q$$

$$q \xrightarrow{a(a \to \epsilon)} q$$

$$q \xrightarrow{b(b \to \epsilon)} q$$

$$q \xrightarrow{\epsilon(\$ \to \epsilon)} f$$

3. (20%) For this problem read the revised slides for Chomsky's Hierarchy.

Let L be the language $L = \{ a^p b^q c^p d^q \mid p, q > 0 \}$.

Show that L is context-sensitive.

[Hint: Define a non-contracting grammar that generates L, using the same approach as the one used for $a^nb^nc^n$ in the slides.]

Solution. Nonterminals: S (initial), X, Y, B, C

$$S o XY$$
 $X o aXC \mid aC, \qquad Y o BYd \mid Bd$
 $CB o BC$
 $aB o ab, \qquad bB o bb$
 $Cd o cd, \qquad Cc o cc$