B501, Fall 2024
© Daniel Leivant 2024

Assignment 8: Parse-trees and Dual-Clipping
Solutions

Practice problems and problem-parts are labeled in red.
Assigned problems and problem-parts are labeled in green.

1. (30%) For each of the following languages L construct a CFG G that generates it. Then
give a parse tree for the string indicated, as well as the left-most derivation for that parse-tree.

(i) L ={(ab)*(ba)® |n >0} ababbaba.
Solution. (without the parse-tree.) S — abSba | &
S = abSba = ababSbaba => ababbaba

(a) L={a"®*|n<k} aabbb
Solution. S — aSb|Sb|e
Derivation: S = Sb = aSbb = aaSbbb

(b) L={a™* |k <n<2k} aaabb
Solution. S — aSb|aaSb|e¢
S = aSb = aaaSbb = aaabb

A. Consider the CFG S | aSb | . So the degree is d = 3 and the number of nonterminals
is m = 1. Take some string in £(G) of length > d™ = 3, exhibit its parse-tree, and extract
the strings vg, 2, ¥y, 2, v; predicted by the Dual-Clipping Theorem.

[

Taking the two lower occurrences of S, we have vp = a.xr =a,y=¢€,z=Db,and v; =b.

Solution.

MmO —um-0n—W0m

a bb

2. (20%) Consider the following CFG G. (It generates the language {c’a”cFd*bit"}))
S — cSb|P
P —» aPb|M
M — cMd|e

(a) Identify the clipping constant k = d™ for G.
Solution. d=3, m=3, k=3%=27.
(b) Construct a parse-tree of G for the string caaccddbbb.

Solution. S
uti C /S\b
|

(c) For the top two P’s identify the partition v -z -y - 2 -v; stated in the Dual-Clipping
Theorem.

Solution. c-a-accddb-b-b.
(d) Repeat for the bottom two occurrences of M.
Solution. caac-c:-&-d-dbbb.

3. (20%) Show that L = {a’b*a’|i > 0} isnota CFL.

Solution. Suppose L were CF, with clipping constant k. Take w = a*b?*a* € L. We
have w € L and |w| > k. By the Dual-Clipping Theorem there is a substring p = o - = - ¥
of w with yoy; # £ and |p| < k such that the string w’ obtained by removing 1, and
from w isin L.

The string p cannot straddle all three blocks, since |p| < k. So either w’ misses letters of
w in aF¥bZ* but not in the last block a*, or w’ misses letters in b2*a* but not in the
initial block a*. In either case w’ cannot be of the form a‘b?a’ and so is not in L, a
contradiction. It follows that no CFG generating L exists.

4. (20%) Show that L = {a’b/a’ |i > j = 0} is not CF. [Hint: Use dual-pumping]
Solution. Let k > 0. Choose w = a*b*a*, which is in L. Any substring p = yoxy; of
w with yy1 # ¢ and |p| < k intersects at most two of the k-long blocks.

Consider the result w’ of removing from w the substrings 7, and ;. If p does not
intersect the block b* then w’ has the form a?b*b? where p+ ¢ < 2k , which is notin L

Otherwise the second pumping instance of w over 1 and y; has the form a?b‘a? where
£ >k and p+ q < 2k, a string which is, again, notin L.
Thus L fails the Dual-Pumping property of CFLs, and cannot be CF.

5. (10%) The reverse of a language L is L = {w® |w € L}.
Give an algorithm that converts a CFG G' generating L to a CFG H generating L. Your
algorithm should produce the desired conversion, but you need not prove that it does.

Solution. Givena CFG G generating L, let G be the CFG whose productions are A — wh
for each production A — w of G. Then L = L(G).

In proof (not required) we show that

S=% IF S=>%wh
for any n and any string w (of terminals and nonterminals of G). This is established by in-
duction on n.

