Assignment 8: Parse-trees and Dual-Clipping Solutions

Practice problems and problem-parts are labeled in red. Assigned problems and problem-parts are labeled in green.

- 1. (30%) For each of the following languages L construct a CFG G that generates it. Then give a parse tree for the string indicated, as well as the left-most derivation for that parse-tree.
 - (i) $L = \{(ab)^n (ba)^n \mid n \ge 0\}$ ababbaba. Solution. (without the parse-tree.) $S \to abSba \mid \varepsilon$

 $S \Rightarrow abSba \Rightarrow ababSbaba \Rightarrow ababbaba$

- (a) $L = \{a^n b^k \mid n \leq k\}$ aabbb Solution. $S \rightarrow aSb \mid Sb \mid \varepsilon$ Derivation: $S \Rightarrow Sb \Rightarrow aSbb \Rightarrow aaSbbb$
- (b) $L = \{a^n b^k \mid k \leq n \leq 2k\}$ aaabb Solution. $S \rightarrow aSb \mid aaSb \mid \varepsilon$ $S \Rightarrow aSb \Rightarrow aaaSbb \Rightarrow aaabb$
- A. Consider the CFG $S | aSb | \varepsilon$. So the degree is d = 3 and the number of nonterminals is m = 1. Take some string in $\mathcal{L}(G)$ of length $\ge d^m = 3$, exhibit its parse-tree, and extract the strings v_0, x, y, z, v_1 predicted by the Dual-Clipping Theorem.

Solution.

Taking the two lower occurrences of S, we have $v_0 = a$. x = a, $y = \varepsilon$, z = b, and $v_1 = b$.

2. (20%) Consider the following CFG G. (It generates the language $\{c^{i}a^{n}c^{k}d^{k}b^{i+n}\}$.)

 $\begin{array}{rrr} S & \rightarrow & \mathrm{cSb} \mid P \\ P & \rightarrow & \mathrm{aPb} \mid M \\ M & \rightarrow & \mathrm{cMd} \mid \varepsilon \end{array}$

Solution.

- (a) Identify the clipping constant $k = d^m$ for G. Solution. $d = 3, m = 3, k = 3^3 = 27$.
- (b) Construct a parse-tree of G for the string **caaccddbbb**.

(c) For the top two P's identify the partition $v_0 \cdot x \cdot y \cdot z \cdot v_1$ stated in the Dual-Clipping Theorem.

Solution. $\mathbf{c} \cdot \mathbf{a} \cdot \mathbf{a} \mathbf{c} \mathbf{c} \mathbf{d} \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b}$.

(d) Repeat for the bottom two occurrences of M. Solution. caac $\cdot c \cdot \varepsilon \cdot d \cdot dbbb$. 3. (20%) Show that $L = \{a^i b^{2i} a^i \mid i \ge 0\}$ is not a CFL.

Solution. Suppose *L* were CF, with clipping constant *k*. Take $w = a^k b^{2k} a^k \in L$. We have $w \in L$ and |w| > k. By the Dual-Clipping Theorem there is a substring $p = y_0 \cdot x \cdot y_1$ of *w* with $y_0y_1 \neq \varepsilon$ and |p| < k such that the string *w'* obtained by removing y_0 and y_1 from *w* is in *L*.

The string p cannot straddle all three blocks, since $|p| \leq k$. So either w' misses letters of w in $a^k b^{2k}$ but not in the last block a^k , or w' misses letters in $b^{2k} a^k$ but not in the initial block a^k . In either case w' cannot be of the form $a^i b^{2i} a^i$ and so is not in L, a contradiction. It follows that no CFG generating L exists.

4. (20%) Show that $L = \{a^i b^j a^i \mid i \ge j \ge 0\}$ is not CF. [Hint: Use dual-pumping]

Solution. Let k > 0. Choose $w = a^k b^k a^k$, which is in *L*. Any substring $p = y_0 x y_1$ of w with $y_0 y_1 \neq \varepsilon$ and $|p| \leq k$ intersects at most two of the k-long blocks.

Consider the result w' of removing from w the substrings y_0 and y_1 . If p does not intersect the block b^k then w' has the form $a^{p}b^kb^q$ where p+q < 2k, which is not in L. Otherwise the second pumping instance of w over y_0 and y_1 has the form $a^{p}b^{\ell}a^{q}$ where $\ell > k$ and $p+q \leq 2k$, a string which is, again, not in L.

Thus *L* fails the Dual-Pumping property of CFLs, and cannot be CF.

5. (10%) The *reverse* of a language L is $L^{R} = \{w^{R} \mid w \in L\}$. Give an algorithm that converts a CFG G generating L to a CFG H generating L^{R} . Your algorithm should produce the desired conversion, but you need not prove that it does.

Solution. Given a CFG G generating L, let \tilde{G} be the CFG whose productions are $A \to w^R$ for each production $A \to w$ of G. Then $\tilde{L} = \mathcal{L}(\tilde{G})$.

In proof (not required) we show that

 $S \Rightarrow_G^n$ IFF $S \Rightarrow_{\tilde{G}}^n w^R$

for any n and any string w (of terminals and nonterminals of G). This is established by induction on n.