B501, Fall 2024 © Daniel Leivant 2024

Assignment 5: Regular languages

- 1. (14%) For each of the following languages over $\Sigma = \{a, b\}$ show that it is basic, by giving regular expressions and/or using closure properties of the basic languages. Do not use recognition by DFAs or NFAs. Assume that \star is an extra regular expression denoting Σ^* .
 - (i) The set of strings with no consecutive a's.
 Solution. The set of strings with two consecutive a's is denoted by the regular expression *aa* and is therefore basic. The given language is its complement, and is therefore basic as well.
 - (a) $L = \{ w \in \Sigma^* \mid \#_a(w) \text{ even and } \#_b(w) \text{ odd } \}$
 - (b) The language L consisting of strings with no substring aaaa or bbbb.
- 2. (16%) Suppose that $L \subseteq \Sigma^*$ is basic. Use closure under set and language operations to show that the following languages are also basic.
 - (a) $L' = \{ w \in L \mid |w| \text{ is even } \}$
 - (b) $\tilde{L} = \{x_1 \cdot y_1 \cdots x_n \cdot y_n \mid n \ge 0, x_i \in L, y_i \notin L\}$
- **3.** (10%)
 - (a) Given a language K describe an infinite collection L_1, L_2, \ldots of basic languages whose union is K.
 - (b) Given a language K describe an infinite collection of basic languages whose *intersection* (i.e. the strings that are in all of them) is K.
 [Hint: This problem is dual to the previous one. But in place of the union of trivial finite languages, consider here the intersection of trivial co-finite languages.]
- 4. (10%) Let $\Sigma = \{a, b, c\}$ and $f: \Sigma^* \to \Sigma^*$ the function that for input w yields the string obtained by duplicating each a. E.g. f(baaca) = baaaacaa. Prove that if L is a regular language, then so is $\{f(w) \mid w \in L\}$. [Hint: Think of a regular expression for L.]

5. (20%) Convert the following NFA into an equivalent DFA.

6. (20%) Convert the following NFA into an equivalent regular expression. Exhibit all stages of the conversion.

7. (10%) A **CNFA** (conjunctive NFA) C (over alphabet Σ) is like an NFA, except that a string w is accepted by C if every state p such that $s \xrightarrow{w} p$ is accepting. Prove that a language is recognized by a CNFA iff it is regular. [Hint: When is a string w not accepted by C?]