Assignment 3: Generated sets

(Due by EOD F Sep 27)

- 1. (15%) Prove by Shifted Induction that for every natural number $n \ge 8$ there are $a, b \in \mathbb{N}$ such that n = 3a + 5b.
- **2.** (10%)
 - (i) Prove by Shifted Induction that $2^n > 2n + 1$ for $n \ge 3$. (Remember that $2^{k+1} = 2^k + 2^k$.) Solution. <u>Base</u>. For n = 3 we have $2^n = 8 > 7 = 2n + 1$. <u>Step.</u> Suppose $2^k \ge 2k+1$. Then, for n = k+1 we have $2^n = 2^{k+1} = 2^k + 2^k$ > 2(2k+1) (IH)

>
$$2(k+1)+1$$
 since $k > 1$
= $2n+1$

- (a) Use (i) to prove by Shifted Induction that $2^n > n^2$ for $n \ge 5$.
- **3.** (15%) Show that for every list $\ell = (a_1 \dots a_n)$ $(n \ge 0)$ of positive real numbers, if $\prod \ell = a_1 \times \dots \times a_n = 1$ then $\sum \ell = a_1 + \dots + a_n \ge n$. [Hint: For the induction step, when proving for ℓ of length k+1, let a be the largest entry in ℓ and b the smallest, replace a and b by their product ab; observe that $a \ge 1 \ge b$.]
- 4. (15%) Consider checker-boards. Define an L-*piece* to be three squares forming the shape L. Prove that every $2^n \times 2^n$ board with one square removed can be covered by L-pieces. For example, a 2×2 board with one square removed is already a single L-piece!
- (10%) Prove by shifted induction from 1: If A₁,..., A_n are sets, of which every two are comparable, then there is an A_i which is a subset of all the others.
 (We say that sets A, B are comparable if either A ⊆ B or B ⊆ A.)
- 6. (10%) Use induction for binary trees (NOT induction for natural numbers!) to prove that the number of leaves in a binary tree is 1 + the number of internal nodes.
- 7. (10%) Define by recurrence on \mathbb{N} the function $F : \mathbb{N} \to \operatorname{ASCII}^*$ given by $F(n) = 0^n \operatorname{abc1}^{2n}$. You may use without definition the concatenation function between strings.

8. (15%) Fix an alphabet Σ . The concatenation function over Σ^* is defined by the recurrence $\varepsilon \cdot v = v$, $\sigma u \cdot v = \sigma(u \cdot v)$. In class we gave a definition by recurrence of the length function $w \mapsto |w|$ from Σ^* to \mathbb{N} .

Use these definitions to prove by induction on strings that $|w \cdot v| = |w| + |v|$ for all $w, v \in \Sigma^*$.