Assignment 3: Generated sets

(Due by EOD F Sep 27)

Solutions.

1. (15%) Prove by Shifted Induction that for every natural number $n \ge 8$ there are $a, b \in \mathbb{N}$ such that n = 3a + 5b.

Solution. <u>Base</u>. For n = 8 we can take a = b = 1. <u>Step</u>. Suppose the given property holds for $n = k \ge 8$, that is k = 3a + 5b for some $a, b \in \mathbb{N}$. If $b \ge 1$ then k+1 = 3(a+2) + 5(b-1). Otherwise, i.e. b = 0, we have $k = 3a \ge 8$, so $a \ge 3$. We have then $k + 1 = 3(a - 3) + 5 \cdot 2$. By shifted induction it follows that for every natural number

By shifted induction it follows that for every natural number $n \ge 8$ there are $a, b \in \mathbb{N}$ such that n = 3a + 5b.

- **2.** (10%)
 - (i) Prove by Shifted Induction that $2^n > 2n + 1$ for $n \ge 3$. (Remember that $2^{k+1} = 2^k + 2^k$.) Solution. <u>Base.</u> For n = 3 we have $2^n = 8 > 7 = 2n + 1$. <u>Step.</u>

Suppose $2^k \ge 2k+1$. Then, for n = k+1 we have

$$\begin{array}{rcl} 2^n = 2^{k+1} & = & 2^k + 2^k \\ & > & 2(2k+1) & (IH) \\ & > & 2(k+1) + 1 & \text{since} \ k > 1 \\ & = & 2n+1 \end{array}$$

(a) Use (i) to prove by Shifted Induction that $2^n > n^2$ for $n \ge 5$. Solution. **Base.** For n = 5 we have $2^n = 32 > 25 = n^2$. **Step.** Suppose $2^k > k^2$. Then, for n = k+1, $k \ge 5$,

$$\begin{array}{rcl} 2^n = 2^{k+1} &=& 2^k + 2^k \\ &>& k^2 + 2^k & (IH) \\ &>& k^2 + 2k + 1 & (by previous observation) \\ &=& (k+1)^2 = n^2 \end{array}$$

By shifted induction, it follows that $2^n > n^2$ for all natural numbers $n \ge 5$.

3. (15%) Show that for every set $R = \{a_1 \dots a_n\}$ $(n \ge 1)$ of positive real numbers, if $\prod R = a_1 \times \dots \times a_n = 1$ then $\sum R = a_1 + \dots + a_n \ge n$. [Hint: For the induction step, when proving for R of length k+1, let a be the largest entry in R and b the smallest, replace a and b by their product ab; observe that $a \ge 1 \ge b$.]

Solution. We use Shifted Induction from 1.

<u>Base</u>. n=1, say $R = \{a\}$. Then $\prod R = 1$ implies $\sum R = a = 1 \ge n$.

▶ Step. Assume our claim holds for sets with $k \ge 1$ elements. Given a list R of k+1 positive reals such that $\prod R = 1$. let a be R's largest entry and b its smallest entry. So $b \le 1$. a and b must be different, because $k+1 \ge 2$. So a>1>b and therefore a>ab>b.

Consider the set $R' =_{df} R$ with a, b removed and replaced by $a \cdot b$. a and b are different, so R' has k elements. Also, $\prod R' = \prod R = 1$. So by IH $\sum R' \ge k$. We obtain

 $\sum R' = (\sum R) + a + b - ab$ $\geqslant (\sum R) + 1 \qquad \text{because } a - ab = a(1-b) \ge 1-b,$ since $a \ge 1$ and $1-b \ge 0$ $\ge k+1$

This concludes the Induction Step and the proof.

Remark. A remarkable consequence of the statement above is that the geometric mean of a set of positive real numbers is \leq its arithmetic mean. Given a set R of n positive real numbers, its geometric mean is $G = (\prod R)^{1/n}$. Let $R' =_{df} \{x/G \mid x \in R\}$. Then

$$\prod R' = (\prod R)/G^n = (\prod R)/(\prod R) = 1$$

By the statement above, we conclude $\sum R' \ge n$. But $\sum R' = (\sum R)/G$, and so $(\sum R)/G \ge n$, that is $(\sum R)/n \ge G$.

4. (15%) Consider square checker-boards of unspecified size. Define an L-*piece* to be three squares forming the shape L. Prove that every $2^n \times 2^n$ board with one square removed can be covered by L-pieces. For example, a 2×2 board with one square removed is already a single L-piece!

SOLProof by induction on n.

Basis n = 0, so $2^n = 1$. Removing a square from a 1×1 board yields a vacuous board, which is indeed covered by 0 many L-pieces.

Step. Assume the statement true for n. A $2^{n+1} \times 2^{n+1}$ board B can be partitioned into four $2^n \times 2^n$ boards. Removing a square from B results in one of the four quarters having that square removed, while an L-piece in the center of B overlaps each of the three remaining quarters. Removing that piece we get each of the four quarters missing a square, and therefore covered by L-pieces by IH. Together with the L-piece in the middle we obtain a cover of B (with one square removed) by L-pieces.

5. (10%) Prove by shifted induction from 1: If A_1, \ldots, A_n are sets, of which every two are comparable, then there is an A_i which is a subset of all the others.

(We say that sets A, B are *comparable* if either $A \subseteq B$ or $B \subseteq A$.)

Solution. Shifted induction on n, starting with 1.

<u>Base</u>: If n = 1 then A_1 is a subset of itself, and therefore of all the sets A_1, \ldots, A_n .

<u>Step</u>: Suppose the statement holds for n = k. Let A_1, \ldots, A_{k+1} be pairwise comparable sets. Consider the list A_1, \ldots, A_k . By IH there is an A_i $(i \leq k)$ contained in all of them.

By assumption A_i and A_{k+1} are comparable. If $A_i \subseteq A_{k+1}$ then A_i is contained in each of A_1, \ldots, A_{k+1} . Otherwise $A_{k+1} \subseteq A_i$, and since the subset relation is transitive, we have $A_{k+1} \subseteq A_j$ for all A_j 's. In either case, one of the sets listed is contained in all the others.

By Induction on \mathbb{N} it follows that the statement is true for all $n \in \mathbb{N}$.

6. (10%) Use induction for binary trees (NOT induction for natural numbers!) to prove that the number of leaves in a binary tree is 1 + the number of internal nodes.

Solution. Write L(t) for the number of leaves of a binary tree t,

(t) for the number of internal nodes,

and $\langle t_0, t_1 \rangle$ for the tree with t_0 and t_1 as immediate subtrees. <u>Base:</u> $t = \varepsilon$. There is one leaf (the only node), and no internal node. So L(t) = 1 = 0 + 1 = I(t) + 1

Joining trees: Assume the statement true for $t = u_0$ and $t = u_1$. We prove it for $t = \langle u_0, u_1 \rangle$.

 $L(u) = L(u_0) + L(u_1)$ = $(I(u_0) + 1) + (I(u_1) + 1)$ (IH) = $(I(u_0) + I(u_1) + 1) + 1$ = I(u) + 1

7. (10%) Define by recurrence on \mathbb{N} the function $F : \mathbb{N} \to \operatorname{ASCII}^*$ given by $F(n) = 0^n \operatorname{abc1}^{2n}$. You may use without definition the concatenation function between strings.

Solution. F(0) = abc $F(sx) = 0 \cdot F(x) \cdot 11$

8. (15%) Fix an alphabet Σ . The concatenation function over Σ^* is defined by the recurrence $\varepsilon \cdot v = v$, $\sigma u \cdot v = \sigma(u \cdot v)$.

In class we gave a definition by recurrence of the length function $w \mapsto |w|$ from Σ^* to \mathbb{N} .

Use these definitions to prove by induction on strings that $|w \cdot v| = |w| + |v|$ for all $w, v \in \Sigma^*$.

Solution. We prove by induction on w that for all v, $|w \cdot v| = |w| + |v|$. **Basis:** $w = \varepsilon$:

$$\begin{aligned} |\varepsilon \cdot v| &= |v| & (\text{Dfn by recurrence of } \cdot) \\ &= 0 + |v| \\ &= |\varepsilon| + |v| & (\text{Dfn by recurrence of } |\cdot|) \end{aligned}$$

Steps: $w = \sigma x$:

Assume that for all v, $|x \cdot v| = |x| + |v|$ (IH). Then

$$\begin{aligned} |(\sigma x) \cdot v| &= |\sigma(x \cdot v) & (\text{Dfn of } \cdot) \\ &= 1 + |x \cdot v| & (\text{Dfn of } |\cdot|) \\ &= 1 + (|x| + |v|) & (\text{IH}) \\ &= (1 + |x|) + |v| \\ &= |\sigma x| + |v| & (\text{Dfn of } |\cdot|) \end{aligned}$$