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© 2024 Daniel LeivantAssignment 3: Generated sets
(Due by EOD F Sep 27)

Solutions.

1. (15%) Prove by Shifted Induction that for every natural number
n > 8 there are a, b ∈ N such that n = 3a + 5b.

Solution. Base. For n = 8 we can take a = b = 1.

Step. Suppose the given property holds for n = k > 8, that is
k = 3a + 5b for some a, b ∈ N. If b > 1 then k+1 = 3(a+2) + 5(b−1).

Otherwise, i.e. b = 0, we have k = 3a > 8, so a > 3. We have
then k + 1 = 3(a − 3) + 5 · 2.

By shifted induction it follows that for every natural number
n > 8 there are a, b ∈ N such that n = 3a + 5b.

2. (10%)

(i) Prove by Shifted Induction that 2n > 2n + 1 for n > 3 .
(Remember that 2k+1 = 2k + 2k.)

Solution. Base. For n = 3 we have 2n = 8 > 7 = 2n + 1.
Step.

Suppose 2k > 2k+1. Then, for n = k + 1 we have

2n = 2k+1 = 2k + 2k

> 2(2k + 1) (IH)
> 2(k+1)+1 since k > 1
= 2n + 1

(a) Use (i) to prove by Shifted Induction that 2n > n2 for n > 5.
Solution. Base. For n = 5 we have 2n = 32 > 25 = n2.
Step. Suppose 2k > k2. Then, for n = k+1 , k > 5,

2n = 2k+1 = 2k + 2k

> k2 + 2k (IH)
> k2+2k+1 (bypreviousobservation)
= (k + 1)2 = n2

By shifted induction, it follows that 2n > n2 for all natural
numbers n > 5.

3. (15%) Show that for every set R = {a1 . . . an} (n > 1) of positive
real numbers, if

∏
R = a1×· · ·×an = 1 then

∑
R = a1+· · ·+an > n .

[Hint: For the induction step, when proving for R of length k+1 ,
let a be the largest entry in R and b the smallest, replace a
and b by their product ab; observe that a > 1 > b.]



Solution. We use Shifted Induction from 1.

Base. n=1, say R = {a}. Then
∏

R = 1 implies
∑

R = a = 1 > n.

◮ Step. Assume our claim holds for sets with k > 1 elements.
Given a list R of k+1 positive reals such that

∏
R = 1. let

a be R ’s largest entry and b its smallest entry. So b 6 1 . a
and b must be different, because k+1 > 2. So a>1>b and
therefore a>ab> b.

Consider the set R′ =df R with a, b removed and replaced
by a · b. a and b are different, so R′ has k elements. Also,
∏

R′ =
∏

R = 1 . So by IH
∑

R′ > k. We obtain
∑

R′ = (
∑

R)+a+b−ab
> (

∑
R)+1 because a−ab = a(1−b) > 1−b,

since a > 1 and 1−b > 0
> k+1

This concludes the Induction Step and the proof.

Remark. A remarkable consequence of the statement above is
that the geometric mean of a set of positive real numbers is 6

its arithmetic mean. Given a set R of n positive real numbers,
its geometric mean is G = (

∏
R)1/n. Let R′ =df {x/G | x ∈ R}.

Then
∏

R′ = (
∏

R)/Gn = (
∏

R)/(
∏

R) = 1

By the statement above, we conclude
∑

R′ > n.
But

∑
R′ = (

∑
R)/G, and so (

∑
R)/G > n, that is (

∑
R)/n > G.

4. (15%) Consider square checker-boards of unspecified size. Define
an L-piece to be three squares forming the shape L. Prove that
every 2n × 2n board with one square removed can be covered by
L-pieces. For example, a 2 × 2 board with one squre removed is
already a single L-piece!

SOLProof by induction on n.

Basis n = 0 , so 2n = 1. Removing a square from a 1 × 1
board yields a vacuous board, which is indeed covered by 0 many
L-pieces.

Step. Assume the statement true for n. A 2n+1 × 2n+1 board
B can be partitioned into four 2n × 2n boards. Removing a
square from B results in one of the four quarters having that
square removed, while an L-piece in the center of B overlaps each
of the three remaining quarters. Removing that piece we get each
of the four quarters missing a square, and therefore covered by
L-pieces by IH. Together with the L-piece in the middle we obtain
a cover of B (with one square removed) by L-pieces.
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5. (10%) Prove by shifted induction from 1: If A1, . . . , An are sets,

of which every two are comparable, then there is an Ai which

is a subset of all the others.

(We say that sets A, B are comparable if either A ⊆ B or
B ⊆ A.)

Solution. Shifted induction on n, starting with 1.

Base: If n = 1 then A1 is a subset of itself, and therefore of
all the sets A1, . . . , An.

Step: Suppose the statement holds for n = k. Let A1, . . . , Ak+1

be pairwise comparable sets. Consider the list A1, . . . , Ak . By
IH there is an Ai (i 6 k) contained in all of them.

By assumption Ai and Ak+1 are comparable. If Ai ⊆ Ak+1

then Ai is contained in each of A1, . . . , Ak+1. Otherwise Ak+1 ⊆ Ai,
and since the subset relation is transitive, we have Ak+1 ⊆ Aj

for all Aj’s. In either case, one of the sets listed is contained in
all the others.

By Induction on N it follows that the statement is true for all
n ∈ N.

6. (10%) Use induction for binary trees (NOT induction for natural
numbers!) to prove that the number of leaves in a binary tree is
1 + the number of internal nodes.

Solution. Write L(t) for the number of leaves of a binary tree
t,
(t) for the number of internal nodes,
and 〈t0, t1〉 for the tree with t0 and t1 as immediate subtrees.

Base: t = ε. There is one leaf (the only node), and no internal
node. So L(t) = 1 = 0 + 1 = I(t) + 1

Joining trees: Assume the statement true for t = u0 and t = u1.
We prove it for t = 〈u0, u1〉.

L(u) = L(u0) + L(u1)
= (I(u0) + 1) + (I(u1) + 1) (IH)
= (I(u0) + I(u1) + 1) + 1
= I(u) + 1

7. (10%) Define by recurrence on N the function F : N → ascii
∗

given by F (n) = 0
n
abc1

2n. You may use without definition the
concatenation function between strings.

Solution. F (0) = abc

F (sx) = 0 · F (x) · 11

8. (15%) Fix an alphabet Σ. The concatenation function over Σ∗

is defined by the recurrence ε · v = v , σu · v = σ(u · v).
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In class we gave a definition by recurrence of the length function
w 7→ |w| from Σ∗ to N.

Use these definitions to prove by induction on strings that |w · v| = |w| + |v|
for all w, v ∈ Σ∗.

Solution. We prove by induction on w that for all v, |w · v| = |w| + |v|.

Basis: w = ε:

|ε · v| = |v| (Dfn by recurrence of ·)
= 0 + |v|
= |ε| + |v| (Dfn by recurrence of | · | )

Steps: w = σx:
Assume that for all v , |x · v| = |x| + |v| (IH). Then

|(σx) · v| = |σ(x · v) (Dfn of ·)
= 1 + |x · v| (Dfn of | · |)
= 1 + (|x| + |v|) (IH)
= (1 + |x|) + |v|
= |σx| + |v| (Dfn of | · |)
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