Assignment 2: Relations and Mappings

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

- 1. (25%) Let $A = \{a, b, c, d\}$ and $B = \{0, 1, 2\}$. For each of the following types of mapping from A to B determine the number of possible distinct mappings of that type.
 - (i) All mappings.

Solution. There are 12 elements (pairs) in $A \times B$, so there are $2^{12} = 4048$ possible mappings, i.e binary relations.

Alternative approach: For each $x \in A$ there are $2^3 = 8$ options for output-set. So altogether we have $8^4 = 4048$ mappings.

- (ii) Partial functions, i.e. univalent mappings. Solution. For each $x \in A$ there are four options for F(x): 0,1,2 and *undefined*. So there are $4 \times 4 = 16$ partial-functions from A to B.
- (a) Total-functions.
- (b) Total mappings. [Hint: Consider the second solution to (i), but now ∅ is not an an acceptable output-set.]
- (c) Surjective mappings. [Hint: Use (b)]
- (d) Injective mappings. [Hint: Same as the number of univalent mappings from B to A. Now (ii).]
- (e) Bijections. [Hint: This is a trick question.]
- 2. (10+10+5%) Let $f: \mathbb{N} \to A$ be an injection, and **B** a set.
 - (a) Define an injection $g: \mathbb{N} \times B \to A \times B$.
 - (b) Define an injection $j: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(A)$.
 - (c) Define a surjective partial-function $g: A \rightarrow \mathbb{N}$.
- 3. (10+5%) Functions f, g over \mathbb{N} are almost equal (notation: $f =_{ae} g$) if there are only finitely many n's for which $f(n) \neq g(n)$.
 - (a) Prove that $=_{ae}$ is an equivalence relation.
 - (b) What is the equivalence class of the constant function f(x) = 0?
- 4. (10%) Prove that $\mathbb{R} \times \mathbb{R} \preccurlyeq \mathbb{R}$. [Hint: Define an injection $j: (0..1) \times (0..1) \rightarrow (0..1)$ where j(a, b) has the infinite binary expansion obtained by merging the binary expansions of a and of b.]
- 5. (10%) Show that the set F of functions from \mathbb{N} to \mathbb{N} is not countable. [Hint: Show that $(0..1) \preccurlyeq F$ by mapping each a in the domain to function from \mathbb{N} to $\{0,1\}$ corresponding to the infinite binary expansion of a.]
- 6. (15%) Use the CBS Theorem to show that {a,b}* ≃ {a,b,c}*.
 [Hint: For an injection h: {a,b,c}* → {a,b}* use two-letter codes for a,b,c. (This is analogous to the binary coding of ASCII characters.)]