Assignment 2: Relations and Mappings (Solutions)

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

- 1. (25%) Let $A = \{a, b, c, d\}$ and $B = \{0, 1, 2\}$. For each of the following types of mapping from A to B determine the number of possible distinct mappings of that type.
 - (i) All mappings.

Solution. There are 12 elements (pairs) in $A \times B$, so there are $2^{12} = 4048$ possible mappings, i.e binary relations.

Alternative approach: For each $x \in A$ there are $2^3 = 8$ options for output-set. So altogether we have $8^4 = 4048$ mappings.

(ii) Partial functions, i.e. univalent mappings.

Solution. For each $x \in A$ there are four options for F(x): 0, 1, 2 and *undefined*. So there are $4 \times 4 = 16$ partial-functions from A to B.

(a) Total-functions.

Solution. For each $x \in A$ we have three options for F(x): 0, 1 and 2. So there are $3 \times 3 = 9$ total-functions from A to B.

(b) Total mappings. [Hint: Consider the second solution to (i), but now ∅ is not an an acceptable output-set.]

Solution. For each $x \in A$ there are 7 options for the output-set, given that \emptyset is excluded. So altogether we have $7^3 = 343$ total mappings.

(c) Surjective mappings. [Hint: Use (b)]

Solution. The surjective mappings from A to B are a mirror image of the total mappings from B to A. From (b) the number of such total mappings, when both domain and 5range have 3 elements, is 343.

(d) Injective mappings. [Hint: Same as the number of univalent mappings from B to A. Now (ii).]

Solution. The injective mappings from A to B are a mirror image of the partial functions from B to A. From (ii) the number of those, when both domain and range have 3 elements, is 12.

(e) Bijections. [Hint: This is a trick question.]Solution. None, since A and B have different size.

- **2.** (10+10+5%). Let $f: \mathbb{N} \to A$ be an injection and *B* an arbitrary set.
 - (a) Define an injection $g: \mathbb{N} \times B \to A \times B$.

Solution. For $x \in \mathbb{N}$ and $y \in B$ let $g(\langle x, y \rangle) = \langle f(x), y \rangle$. g is injective, because if $g(\langle x', y' \rangle) = g(\langle x, y \rangle)$ i.e. $\langle f(x'), y' \rangle = \langle f(x), y \rangle$ then x' = x since f is injective and y' = y by the definition of ordered pairs.

(b) Define an injection $h: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(A)$.

Solution. For $A \subseteq \mathbb{N}$ let $h(X) = \{f(n) \mid n \in X\}$. h is a totalfunction, since it is uniquely defined for every input $X \subset \mathbb{N}$. h is injective because if $X \neq Y$, say $k \in X - Y$, then by the definition of h $f(k) \in h(X)$ but $f(k) \notin h(Y)$, so $h(X) \neq h(Y)$.

(c) Define a surjective partial-function $j: A \rightarrow \mathbb{N}$.

Solution. Let j be the inverse f^{-1} of f. In other words, j(x) is defined to be the unique y for which f(y) = x, if there is such an y, and undefined otherwise.

Since f is injective, j is univalent, and so a partial-function. It is surjective on \mathbb{N} because f is total.

- **3.** (10+5%) Functions f, g over \mathbb{N} are almost equal (notation: $f =_{ae} g$) if there are only finitely many n's for which $f(n) \neq g(n)$.
 - (a) Prove that =_{ae} is an equivalence relation.
 Solution. =_{ae} is reflexive, since a function differs from itself on the empty set, which is finite. It is symmetric by its very definition. To see that it is transitive, suppose that f =_{ae} g, with f and g differing only over a finite set A ⊂ N; and g =_{ae} h, say g and h differing only over a finite set B. Then f and h differ at most over A ∪ B, which is finite. So f =_{ae} h.
 - (b) What is the equivalence class of the constant function f(x) = 0? Solution. The collection of functions $g : \mathbb{N} \to \mathbb{N}$ for which $\{x \in | g(x) \neq 0\}$ is finite.

4. (10%), Prove that $\mathbb{R} \times \mathbb{R} \preccurlyeq \mathbb{R}$. [Hint: Define an injection $j : (0..1) \times (0..1) \rightarrow (0..1)$ where j(a, b) has the infinite binary expansion obtained by merging the binary expansions of a and of b.]

Solution. Define $j: (0..1) \times (0..1) \rightarrow (0..1)$ where j(a, b) $(a, b \in (0..1))$, given infinite decimal expansions $0.d_1d_2$ and $0.e_1e_2\cdots$ for a and b, is the real number with decimal expansion $0.d_1e_1d_2e_2\cdots$.

j is well-defined because

- Every $x \in (0..1)$ has a unique infinite expansion, for example 1/5 expands to $0.19999\cdots$ and 1/6 to $0.166666\cdots$.
- The merging operation is well-defined expansion yielding a unique real number.

We therefore have:

 $\begin{array}{cccc} \mathbb{R} \times \mathbb{R} &\preccurlyeq & \mathbb{R} \times (0..1) & \text{ as in } 2(a), \text{ since } \mathbb{R} \cong (0..1)) \\ &\preccurlyeq & (0..1) \times (0..1) & \text{ for the same reason} \\ &\preccurlyeq & (0..1) & \text{ by } j & \preccurlyeq \end{array}$

 \mathbb{R}

Conversely, $\mathbb{R} \preccurlyeq \mathbb{R} \times \mathbb{R}$ by the injection $x \mapsto \langle 0, x \rangle$. By the CBS Theorem it follows that $\mathbb{R} \times \mathbb{R} \cong \mathbb{R}$.

5. (10%) Show that the set F of functions from \mathbb{N} to \mathbb{N} is not countable.

Solution. Let $j: (0..1) \to F$ be the function that maps $a \in (0..1)$, with infinite decimal expansion $0.d_1d_2\cdots$, to the function $g_a: \mathbb{N} \to \{0, 1, 2...9\}$ defined by $g_a(n) = d_n$. j is an injection, because every $a \in (0..1)$ has a unique infinite decimal expansion.

So $(0..1) \preccurlyeq F$, and F is not countable, lest (0..1) would be countable, which it is not.

6. (15%) Use the CBS Theorem to show that {a,b}* ≈ {a,b,c}*.
[Hint: An injection h: {a,b,c}* → {a,b}* can be defined using a two-letter codes for a, b and c. (This is analogous to the binary coding of ASCII characters.)]

Solution. We have $\{a, b\}^* \preccurlyeq \{a, b, c\}^*$ since the identity function on $\{a, b\}^*$ is an injection into $\{a, b, c\}^*$.

Conversely, define $f: \{a, b, c\}^* \rightarrow \{a, b\}^*$ by

 $f(w) =_{df} w$ with each a replaced by aa, b by bb, and c by ab.

f is an injection:

For every string u the string f(u) has length 2|u|. So if f(u) = f(v)then |u| = |v|, and if $u = \sigma_0 \cdots \sigma_k$ and $v = \tau_0 \cdots \tau_m$ then k = m, $f(u) = f(\sigma_0) \cdots f(\sigma_k)$, and $f(v) = f(\tau_0) \cdots f(\tau_k)$.

By the definition of f, $f(\mathbf{a})$, $f(\mathbf{b})$ and $f(\mathbf{c})$ are all different, so $\sigma_i = \tau_i$ for i = 1..k, in other words u = v. Thus $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}^* \preccurlyeq \{\mathbf{a}, \mathbf{b}\}^*$. $\{\mathbf{a}, \mathbf{b}\}^* \cong \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}^*$ follows by the CBS Theorem.