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Assignment 2: Relations and Mappings (Solutions)
This assignment contains solved practice problems, numbered in red.

The assigned problems and sub-problems are numbered in green.

1. (25%) Let A = {a, b, c, d} and B = {0, 1, 2} . For each of the following
types of mapping from A to B determine the number of possible distinct
mappings of that type.

(i) All mappings.

Solution. There are 12 elements (pairs) in A × B , so there are
212 = 4048 possible mappings, i.e binary relations.

Alternative approach: For each x ∈ A there are 23 = 8 options for
output-set. So altogether we have 84 = 4048 mappings.

(ii) Partial functions, i.e. univalent mappings.

Solution. For each x ∈ A there are four options for F (x): 0, 1, 2
and undefined. So there are 4 × 4 = 16 partial-functions from A to
B.

(a) Total-functions.

Solution. For each x ∈ A we have three options for F (x): 0, 1
and 2. So there are 3 × 3 = 9 total-functions from A to B.

(b) Total mappings. [Hint: Consider the second solution to (i), but now ∅
is not an an acceptable output-set.]

Solution. For each x ∈ A there are 7 options for the output-set,
given that ∅ is excluded. So altogether we have 73 = 343 total map-
pings.

(c) Surjective mappings. [Hint: Use (b)]

Solution. The surjective mappings from A to B are a mirror image
of the total mappings from B to A . From (b) the number of such total
mappings, when both domain and 5range have 3 elements, is 343.

(d) Injective mappings. [Hint: Same as the number of univalent mappings
from B to A . Now (ii).]

Solution. The injective mappings from A to B are a mirror image
of the partial functions from B to A . From (ii) the number of those,
when both domain and range have 3 elements, is 12.

(e) Bijections. [Hint: This is a trick question.]

Solution. None, since A and B have different size.



2. (10+10+5%). Let f : N → A be an injection and B an arbitrary set.

(a) Define an injection g : N × B → A × B.

Solution. For x ∈ N and y ∈ B let g(〈x, y〉) = 〈f(x), y〉 . g is in-
jective, because if g(〈x′, y′〉) = g(〈x, y〉) i.e. 〈f(x′), y′〉 = 〈f(x), y〉 then
x′ = x since f is injective and y′ = y by the definition of ordered

pairs.

(b) Define an injection h : P(N) → P(A).

Solution. For A ⊆ N let h(X) = {f(n) | n ∈ X} . h is a total-
function, since it is uniquely defined for every input X ⊂ N. h is in-
jective because if X 6= Y , say k ∈ X − Y , then by the definition of h
f(k) ∈ h(X) but f(k) 6∈ h(Y ) , so h(X) 6= h(Y ) .

(c) Define a surjective partial-function j : A ⇀ N.

Solution. Let j be the inverse f−1 of f . In other words, j(x) is
defined to be the unique y for which f(y) = x , if there is such an y,
and undefined otherwise.

Since f is injective, j is univalent, and so a partial-function. It is
surjective on N because f is total.

3. (10+5%) Functions f, g over N are almost equal (notation: f =ae g ) if
there are only finitely many n’s for which f(n) 6= g(n).

(a) Prove that =ae is an equivalence relation.

Solution. =ae is reflexive, since a function differs from itself on the
empty set, which is finite.
It is symmetric by its very definition.
To see that it is transitive, suppose that f =ae g, with f and g differ-
ing only over a finite set A ⊂ N; and g =ae h, say g and h differing
only over a finite set B. Then f and h differ at most over A ∪ B,
which is finite. So f =ae h.

(b) What is the equivalence class of the constant function f(x) = 0?

Solution. The collection of functions g : N → N for which {x ∈| g(x) 6= 0}
is finite.
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4. (10%), Prove that R × R 4 R. [Hint: Define an injection j : (0..1) × (0..1) → (0..1)
where j(a, b) has the infinite binary expansion obtained by merging the bi-
nary expansions of a and of b.]

Solution. Define j : (0..1) × (0..1) → (0..1) where j(a, b) (a, b ∈ (0..1)),
given infinite decimal expansions 0.d1d2· and 0.e1e2 · · · for a and b , is
the real number with decimal expansion 0.d1e1d2e2 · · ·.

j is well-defined because

• Every x ∈ (0..1) has a unique infinite expansion, for example 1/5 ex-
pands to 0.19999 · · · and 1/6 to 0.166666 · · ·.

• The merging operation is well-defined expansion yielding a unique real
number.

We therefore have:

R × R 4 R × (0..1) as in 2(a), since R ∼= (0..1))
4 (0..1) × (0..1) for the same reason
4 (0..1) by j 4 R

Conversely, R 4 R × R by the injection x 7→ 〈0, x〉 .

By the CBS Theorem it follows that R × R ∼= R.

5. (10%) Show that the set F of functions from N to N is not countable.

Solution. Let j : (0..1) → F be the function that maps a ∈ (0..1) , with
infinite decimal expansion 0.d1d2 · · · , to the function ga : N → {0, 1, 2...9}
defined by ga(n) = dn. j is an injection, because every a ∈ (0..1) has a
unique infinite decimal expansion.

So (0..1) 4 F , and F is not countable, lest (0..1) would be countable,
which it is not.

6. (15%) Use the CBS Theorem to show that {a, b}∗ ∼= {a, b, c}∗ .
[Hint: An injection h : {a, b, c}∗ → {a, b}∗ can be defined using a two-
letter codes for a, b and c. (This is analogous to the binary coding of ascii

characters.)]

Solution. We have {a, b}∗ 4 {a, b, c}∗ since the identity function on
{a, b}∗ is an injection into {a, b, c}∗.

Conversely, define f : {a, b, c}∗ → {a, b}∗ by

f(w) =df w with each a replaced by aa, b by bb, and c by ab.

f is an injection:
For every string u the string f(u) has length 2 |u| . So if f(u) = f(v)

then |u| = |v|, and if u = σ0 · · · · · σk and v = τ0 · · · · · τm then k = m ,
f(u) = f(σ0) · · · · · f(σk) , and f(v) = f(τ0) · · · · · f(τk) .

By the definition of f , f(a), f(b) and f(c) are all different, so σi = τ i for
i = 1..k, in other words u = v . Thus {a, b, c}∗ 4 {a, b}∗.
{a, b}∗ ∼= {a, b, c}∗ follows by the CBS Theorem.
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