Assignment 1: Languages and sets

(Aug 28, 2024. Due on Canvas by 11:59pm, F Sep 6)

1. (8%) Let $L = \{0, 01\}$ and $M = \{1, 12\}$. So, for example, $L \cdot M = \{01, 012, 011, 0112\}$. Exhibit similarly the languages $M \cdot L$, L^2 , M^2 , and L^3 . Solution.

- 2. (12%) Let $\Sigma = \{a, b\}$. The language $A = (\Sigma^2)^*$ can be described in words as "the set of Σ -strings of even length". Describe in words, in a similar way, the following languages. Shoot for concise and clear descriptions.
 - (a) $B = \{a\} \cdot \Sigma^*$

Solution. The set of strings that start with an a.

- (b) C = Σ* · {b}
 Solution. The set of strings that end with b.
- (c) $D = B \cap C$, where B and C are as above.

Solution. The set of strings that start with a and end with b.

(d) $E = \Sigma \cdot (\Sigma^2)^*$.

Solution. The set of strings of odd length.

- 3. (15%) The previous problem asks for verbal descriptions of languages given by set and language operations. Here we do the opposite. Each of the following is an informal description of a language $L \subseteq \Sigma^*$ where $\Sigma = \{a, b\}$. Show how L can be defined using set operations (union, intersection, difference) and language operations (concatenation, star). For example, the set of strings that start with an **a** is $\{a\} \cdot \Sigma^*$.
 - (a) The set of strings that start with a and end with b.
 Solution. {a} · ∑* · {b}
 - (b) The set of strings with a b. Solution. $\Sigma^* \cdot \{b\} \cdot \Sigma^*$.
 - (c) The set of strings with exactly one b.
 Solution. {a}* · {b} · {a}*.
 - (d) The set of strings with exactly two b's. **Solution**. $L = \{a\}^* \cdot (\{b\} \cdot \{a\}^*)^2 = \{a\}^* \cdot \{b\} \cdot \{a\}^* \cdot \{b\} \cdot \{a\}^*$
 - (e) The set of strings of length ≥ 2 that start and end with the same letter.

Solution. $(\{a\} \cdot \Sigma^* \cdot \{a\}) \cup (\{b\} \cdot \Sigma^* \cdot \{b\})$

- 4. (6+8%) Suppose that a language L is closed under reversal: $L^R = L$.
 - (a) Show that $L \cdot L$ is also closed under reversal, i.e. $(L \cdot L)^R = L \cdot L$. [Hint: You may use without proof the identity $(x \cdot y)^R = y^R \cdot x^R$] Solution.

$$(L \cdot L)^{R} = \{x \cdot y \mid x, y \in L\}^{R}$$

= $\{(x \cdot y)^{R} \mid x, y \in L\}$ dfn of language reversal
= $\{y^{R} \cdot x^{R} \mid x, y \in L\}$ given
= $\{u \cdot v \mid u, v \in L^{R}\}$
= $\{u \cdot v \mid u, v \in L\}$ since $L = L^{R}$
= $L \cdot L$

(b) Show that L^* is closed under reversal.

Solution. From the hint above it also follows that for all strings x_1, \ldots, x_k we have $(x_1, \ldots, x_k)^R = x_k^R, \ldots, x_1^R$. So

$$(L^*)^R = \{x_1 \cdots x_k \mid x_1, \dots, x_k \in L\}^R$$

= $\{(x_1 \cdots x_k)^R \mid x_1, \dots, x_k \in L\}$ dfn of language reversal
= $\{x_k^R \cdots x_1^R \mid x_1, \dots, x_k \in L\}$ given
= $\{u_k \cdots u_1 \mid u_1, \dots, u_k \in L^R\}$
= $\{u_k \cdots u_1 \mid u_1, \dots, u_k \in L\}$ since $L^R = L$
= L^* given closure under reversal

5. (15%) Let $w \in \{a, b\}^*$. Prove that if $a \cdot w = w \cdot a$ then w is a string of a's.

Solution. Suppose w is not a string of a's. We derive a contradiction as follows. ε is a string of a's. If $w \neq \varepsilon$ then it starts with an a and contains a b. That is, w is $a^n \cdot b \cdot u$ for some n > 0 and $u \in \Sigma^*$. Using repeatedly $a \cdot w = w \cdot a$ we get $w = b \cdot u \cdot a^n$. So w starts with b, a contradiction.

- 6. (16%) Consider subsets of a fixed set U. Recall that the complement (in U) of a set $A \subseteq U$ is defined as U A, and denoted by \overline{A} . We can define then intersection of subsets of U in terms of union and complement: $A \cap B = \overline{A \cup \overline{B}}$.
 - (a) Define set-difference in terms of intersection and complement. Solution. $A - B = A \cap \overline{B}$.
 - (b) Define intersection in terms of difference, and nothing else. Solution. $A \cap B = A - (A - B)$.

For example, for $A \cup \emptyset = A$ we have

 $\begin{array}{ll} x\in A\cup \emptyset & \text{IFF} \quad x\in A \text{ or } x\in \emptyset \\ & \text{IFF} \quad x\in A \end{array} \qquad \text{since } x\in \emptyset \text{ is impossible} \end{array}$

Similarly $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ is proved by spelling out in our discourse the meanning of the operators:

$$\begin{aligned} x \in A \cap (B \cup C) & \text{IFF} \quad x \in A \text{ and either } x \in B \text{ or } x \in C \\ \text{IFF} & \text{either } x \in A \text{ and } x \in B \text{ or } x \in A \text{ and } x \in C \\ \text{IFF} & \text{either } x \in A \cap B \text{ or } x \in A \cap C \\ \text{IFF} & x \in (A \cap B) \cup (A \cap C) \end{aligned}$$

(a) $A \cap \emptyset = \emptyset$

Solution.

$$x \in A \cap \emptyset$$
 IFF $x \in A$ and $x \in \emptyset$
which cannot happen, by defin of \emptyset
IFF $x \in \emptyset$

(b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Solution.

 $\begin{array}{ll} x \in A \cup (B \cap C) & \text{i.e.} & x \text{ in } A \text{ or in both } B \text{ and } C \\ & \text{IFF} & x \text{ in both } A \text{ and } B \text{ or in both } A \text{ and } C \\ & \text{IFF} & x \in (A \cup B) \cap (A \cup C) \end{array}$

7. (20%) For each of the following languages L over the alphabet $\{a, b\}^*$ list its residues. For example, if $L = \{ab, ba, aaba\}$ then the residues are

$$\begin{array}{rcl} L/\varepsilon &=& L\\ L/{\tt a} &=& \{{\tt b}, {\tt a}{\tt b}{\tt a}\}\\ L/{\tt b} &=& L/{\tt a}{\tt a}{\tt b}{\tt a}\\ L/{\tt a}{\tt b} &=& L/{\tt a}{\tt b}{\tt a} &=& \{{\tt c}\}\\ L/{\tt a}{\tt a} &=& \{{\tt b}{\tt a}\}\\ L/w &=& \emptyset & \mbox{for any other } w \end{array}$$

And $L = \mathcal{L}(aba^*)$ has four residues.

$$\begin{array}{rcl} L/\varepsilon &=& L\\ L/\mathbf{a} &=& \mathcal{L}(\mathbf{b}\mathbf{a}^*)\\ L/\mathbf{a}bu &=& \mathcal{L}(\mathbf{a}^*) & \quad \text{for any } u \in \mathcal{L}(\mathbf{a}^*)\\ L/w &=& \emptyset & \quad \text{for any other } w \end{array}$$

- (a) L = {a, b}* as a language over the alphabet {a, b, c}.
 Solution. L/w = L for all strings w ∈ {a, b}*. L/w = Ø if c occurs in w.
- (b) $L = \{a^n ba^n \mid n \ge 0\}.$ Solution. We have infinitely many residues:

$$\begin{array}{rcl} L/\mathbf{a}^{i} &=& \{\mathbf{a}^{k}\mathbf{b}\mathbf{a}^{i+k} \mid k \ge 0\} & \text{ for every } i \ge 0. \\ L/\mathbf{a}^{i}\mathbf{b}\mathbf{a}^{j} &=& \{\mathbf{a}^{i-j}\} & \text{ for every } i \ge j \ge 0 \\ L/w &=& \emptyset & \text{ for all other strings } w \end{array}$$