A Methodology for Coupling
Fragments of XPath with Structural
Indexes for XML Documents

George Fletcher, Dirk Van Gucht, Yuqing Wu, Mare
Gyssens, Sofia Brenes, & Jan Paredaens

PBPL 2007
Vienna, Austria

Indices for XML Data

* XPath: expressions specify patterns
* Expression evaluation is aided by indices:
- value-based: consider node values

- structure-based: values & docuwment
structure

What about techniques for using
structural indices in query evalvation?

(1) For which fragments of XPath are particular
structural indices ideally suited?

e.g., in the relational world, range queries and B-trees

(2) For these fragments, how are its expressions
optimally evalvated with the index?

(3) Can the answers to (1) & (2) be bootstrapped
to provide general techniques for evalvation of
arbitrary XPath expressions with indices?

In this paper ...

* Develop general framework and
methodology for investigating pairings of
query languages and structural indexes

* lllustrate this methodology on important
special case of XPath and A(k)/P(k) indexes

Let’s focus on (1);
For which class of XPath

expressions are the P(k) partitions
ideally svited?

Alk) Indices: Localized Bisimilarity

* 1-lndex/Pataquide much too fined-grained,
and hence too large for practical use ...

* Kaushik et al (ICPE ‘02) proposed restricting
1-index to “k-neighborhood”

* Substantially smaller than 1-index/
PataGuide

* Distinguishes nodes by labels and incoming
paths of length k

Vafa Model

= (V, Ed,r, \)

* Documents are finite unordered node-labeled
{rees:

- nodes V

- edges EdCV xV

- Y00t reV
- labels »:V =L

The Alk) Partition of a Document

N1 =A(k) N2

* For nodes nl and n2, we have that they are Alk)-
equivalent if

- they have the sawme label, and

- for k>0, if one has a parent, so does the other
and, furthermore, their parents are Alk-1)-
equivalent

* The partition induced by this relation on nodes is
called the A(k) partition of the document

Projects

Department epartment

Name @ Web @

"Marketing" "http://'
Project Project

"D100" "Sato" "D200" "Dubois" "http://" "A100" "Ivanova"
Name Lead Name

"D100a" "Smith" "Al100a" "Chen" "Al00b" "Adamo"

Projects

—

Department GD/ epartment
Name@ Wek @

"Marketing" "http://'
Project

' "Sato" "D200" "Dubois" "http://" "A100" "Ivanova"
Name

"D100a" "Smith" "Al100a" "Chen" "Al00b" "Adamo"

Consider Alk) indices on the “Design” departwment subtree

Projects

Department

"D100" "sato" "D200"

"D100a" "Smith"

epartment

"Marketing"”
Project Project

"Dubois"” "http://" "A100" "Ivanova"
Name Lead Name

"Al100a" "Chen" "Al00b" "Adamo"

Name

Department
nl

Project Lead
n3, n10, n12, n19 n4, n5, n9 nll, n13, n20

Name @ Web @

"http://'

Projects

Department epartment

Name @ Web @

"Marketing" "http://'
Project Project

"D100" "Sato" "D200" "Dubois" "http://" "A100" "Ivanova"
Name Lead Name

"D100a" "Smith" "Al100a" "Chen" "Al00b" "Adamo"

Department
nl

Project
n4, n5

Name Project Lead
nl10, n12, n19 n9 nll, n13, n20

Projects

Department epartment

Name @ Web @

"Marketing" "http://'
Project Project

"D100" "Sato" "D200" "Dubois" "http://" "A100" "Ivanova"
Name Lead Name

"D100a" "Smith" "Al100a" "Chen" "Al00b" "Adamo"

Department
nl

Project
n4, n5
Project
n9

The P(k) Partition of a Document

(711, ml) =P(k) (n27 mz)

* For nodes nl, ml, n2, and m2 we have that
(nl, ml) and (n2, m2) are P(k)-equivalent if

- (n], ml) and (n2, m2) are in UpPaths(Dk)

- the distance from nl to wml in the document is the same as
that from n2 to m2, and

- N1 =A(k) N2

* The partition induced by this relation on node
pairs in UpPaths(D k) is called the P(k)
partition of the document

XPafh Algebra

= (V, Ed,r, \)

{(m,m) | meV}

0

Ed

Ed"

{(m,m) | m eV and A\(m) = ¢}

XPa’rh Algebra

= (V, Ed,r, \)

{(m,m) | meV}
0

Fd+t

{(m,m) | m eV and A\(m) = ¢}

Ey (D) U Ex(D)

El()ﬂEz(D)

{(m n) \ Hw (m w) € F1(D) & (w,n) € E5(D)}
{(m,n) € E1(D)| Fw: (n,w) € Es(D)}.

XPafh Algebra

= (V, Ed,r, \)

* Global semantics of expressions: binary
relation over V

* Local semantics of expressions: for m € V

E(D)m)={neV | (m,n) € E(D)}

Department

"D100"

"D100a" "Smith"

XPath Algebra

Projects

"Sato" "D200" "Dubois" "http://" "A100" "Ivanova"
Name

"Al00a" "Chen"

epartment

Name @ Web @

"Marketing" "http://'
Project

"A100b" "Adamo"

“Retrieve all department names”

XPath Algebra

Projects

"Marketing" "http://'
Project

" "Sato" "D200" "Dubois" "http://" "A100" "Ivanova"
Name

"D100a" "Smith" "Al00a" "Chen" "A1l00b" "Adamo"

“Retrieve all department names”

E/ =Projects o | o Department o | o Name

XPath Algebra

Projects

M roj roj roj Name@ We

A sli - "Marketing" "http://'

" "Sato" "D200" "Dubois" "http://" "A100" "Ivanova" /
Name Lead Name Lead

"D100a" "Al00a" "Chen" "A1l00b" "Adamo"

“Retrieve all department names”

E/ =Projects o | o Department o | o Name

E(D) = {(no,n3), (no,n7)}

XPath élgebra

epartment

"Marketing" "http://'

"D100a" "Smith" "Al00a" "Chen" "A1l00b" "Adamo"

“Retrieve all department names”

E/ =Projects o | o Department o | o Name

E(D) = {(no,n3), (no,n7)}
E(D)(no) = 1n3, 717}

XPath élqebra

"Al00a" "Chen" "A1l00b" "Adamo"

“Retrieve all projects which are sub-projects of
projects with a website”

XPath Pﬁflqebra

epartment

"Marketing" "http://'

" "sato" "D200" "http://" "A100" "Ivanova"

"D100a" "Smith" "Al00a" "Chen" "A1l00b" "Adamo"

“Retrieve all projects which are sub-projects of
projects with a website”

FE = Project|] o Project o | o Web]

XPath Pﬁflqebra

epartment

"Marketing" "http://'

"D100a" "Smith" "Al00a" "Chen" "A1l00b" "Adamo"

“Retrieve all projects which are sub-projects of
projects with a website”

FE = Project|] o Project o | o Web]

E(D) = {(n17,n17), (n1s, n1s) }

Upward-k Algebras

Upward-k Algebras: for k >= 0, U(k) is the
fragment of the XPath-Algebra with expressions
that do not use the | primitive and have at most
k uses of the T primitive in a “path”

Upward-k Algebras

Department epartment

"Marketing" "http://'
Project

" "Sato" "D200" "Dubois" "http://" "A100" "Ivanova" /
Name Lead Name Lead

"D100a" "Smith" "Al00a" "Chen" "A1l00b" "Adamo"

“Retrieve sub-project leaders”

FE = Lead|l o Project o | o Project]

“Retrieve sub-project leaders”

FE = Lead|l o Project o | o Project]

In U(2) but not in U(1)!

Lanquage Indistinguishability

(n1,m1) =F (n2,m2)

For fragment Fof the XPath algebra, we say node
pairs (nl, ml) and (n2, m2) are indistinguishable

by F it for any expression E in F, it is the case
fhaf (n1,m1) = E(D) = (nz,mg) = E(D)

Coupling P(k) and U(k) Indistinguishability

Coupling Theorem:

Let D be a document and k£ € N. The P(k)-partition of D
and the U (k)-partition of D are the same.

Proof:

* Plk) indistinguishability implies U(k) indistinguishabhility,
via induction on U(k) expressions

* Plk) distinguishability implies U(k) distinguishability, via
construction of partition-block labeling expressions

Coupling P(k) and U(k) Indistinguishability

Block-Union Theorem:

Let D be a document, k£ € N, and E € U(k). Then there
exists a class B g of partition blocks of the P(k)-partition
of D such that E(D) = Jgcy, B-

.. follows directly from Coupling Theorem

These results provide a precise linguistic
characterization of Alk) and P(k) partitions, in
answer to question (1),

Now let’s consider question (2):

How are Ulk) expressions to be
evaluated with the help of P(k)
partitions?

Upward Algebra Eval

* for expressions in Ulk), direct look-up in P(k) index

* for expressions in Ull), | > k, then by decomposition
into U(k) sub-expressions and joining sub-results

Finally, let’s consider question (2):

Can these results be bootstrapped
to provide general techniques for
evalvation of full XPath?

XPath Algebra Eval

* Via predicate elimination and inversion of
remaining ‘downward” subexpressions into
Upward-Algebra subexpressions:

E— E-1

ol md [E

0—0

i i

A— A
EiUE, - E;*UE;!
BBy B m Byt
BBy Bty
Bl o Ey LB d B

* then proceed as before with Upward-Algebra eval

XPath Algebra Eval

Suppose we have a document 1) the P(2) partition of [} and the
query | [|]

XPath Algebra Eval

Suppose we have a document 1) the P(2) partition of [} and the
query | [|]

then ... LL(D)

XPath Algebra Eval

Suppose we have a document 1) the P(2) partition of [} and the
query | [|]

then ... LL(D)

|

Lol (D)

XPath Algebra Eval

Suppose we have a document 1) the P(2) partition of [} and the
query | [|]

then ... LL(D)

XPath Algebra Eval

Suppose we have a document 1) the P(2) partition of [} and the
query | [|]

then...

XPath Algebra Eval

Suppose we have a document 1) the P(2) partition of [} and the
query | [|]

then...

XPath Algebra Eval

Suppose we have a document 1) the P(2) partition of [} and the
query | [|]

then ... LL(D)

Lol (D

l

e

l
(for o= >[(101 (D)t w 1(D)

.. and this can be evalvated directly with the P(2) parition

Research Directions

* (Currently developing new data structures
leveraging these results

- develop fast P(k) partition block look-up
algorithms

* Further study of query decomposition and
inversion algorithms

* Study workload driven index creation

* Study localized branching-path queries and
develop appropriate index structures

Thanks!

Questions?

