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Indices for XML Data

XPath: expressions specify patterns

Expression evaluation is aided by indices: 

- value-based: consider node values

- structure-based: values & document 
structure



What about techniques for using 
structural indices in query evaluation?

(1) For which fragments of XPath are particular 
structural indices ideally suited?

e.g., in the relational world, range queries and B-trees

(2) For these fragments, how are its expressions 
optimally evaluated with the index?

(3) Can the answers to (1) & (2) be bootstrapped 
to provide general techniques for evaluation of 
arbitrary XPath expressions with indices?



In this paper ...

Develop general framework and 
methodology for investigating pairings of 
query languages and structural indexes

Illustrate this methodology on important 
special case of XPath and A(k)/P(k) indexes



Let’s focus on (1):

 For which class of XPath 
expressions are the P(k) partitions 

ideally suited?



A(k) Indices: Localized Bisimilarity

1-Index/Dataguide much too fined-grained, 
and hence too large for practical use ...

Kaushik et al (ICDE ‘02) proposed restricting 
1-index to “k-neighborhood”

Substantially smaller than 1-index/
DataGuide

Distinguishes nodes by labels and incoming 
paths of length k



Data Model

Documents are finite unordered node-labeled 
trees: 

- nodes

- edges

- root

- labels

D = (V,Ed, r, λ)

V

Ed ⊆ V × V

r ∈ V

λ : V → L



The A(k) Partition of a Document

For nodes n1 and n2, we have that they are A(k)-
equivalent if

- they have the same label, and

- for k>0, if one has a parent, so does the other 
and, furthermore, their parents are A(k-1)-
equivalent

The partition induced by this relation on nodes is 
called the A(k) partition of the document

n1 ≡A(k) n2
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Consider A(k) indices on the “Design” department subtree
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(n1,m1) ≡P (k) (n2,m2)

For nodes n1, m1, n2, and m2 we have that 
(n1, m1) and (n2, m2) are P(k)-equivalent if

- (n1, m1) and (n2, m2) are in UpPaths(D,k)

- the distance from n1 to m1 in the document is the same as 
that from n2 to m2, and

-              

The partition induced by this relation on node 
pairs in UpPaths(D, k) is called the P(k) 
partition of the document

n1 ≡A(k) n2

The P(k) Partition of a Document



ε(D) = {(m,m) | m ∈ V }
∅(D) = ∅
↓ (D) = Ed

↑ (D) = Ed−1

"(D) = {(m,m) | m ∈ V and λ(m) = "}

XPath Algebra
D = (V,Ed, r, λ)



ε(D) = {(m,m) | m ∈ V }
∅(D) = ∅
↓ (D) = Ed

↑ (D) = Ed−1

"(D) = {(m,m) | m ∈ V and λ(m) = "}
E1 ∪ E2(D) = E1(D) ∪ E2(D)
E1 ∩ E2(D) = E1(D) ∩ E2(D)
E1 − E2(D) = E1(D)− E2(D)
E1 ◦ E2(D) = {(m,n) | ∃w : (m,w) ∈ E1(D) & (w, n) ∈ E2(D)}
E1[E2](D) = {(m,n) ∈ E1(D)| ∃w : (n, w) ∈ E2(D)}.

XPath Algebra
D = (V,Ed, r, λ)



Global semantics of expressions:  binary 
relation over

Local semantics of expressions:  for m ∈ V

V

E(D)(m) = {n ∈ V | (m,n) ∈ E(D)}

D = (V,Ed, r, λ)

XPath Algebra
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“Retrieve all department names”

XPath Algebra
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“Retrieve all department names”

E = Projects ◦ ↓ ◦ Department ◦ ↓ ◦ Name

XPath Algebra
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“Retrieve all department names”

E = Projects ◦ ↓ ◦ Department ◦ ↓ ◦ Name

E(D) = {(n0, n3), (n0, n7)}

XPath Algebra



"Marketing"

n2
Department

Name

Name

Project Project

Name

Name

Lead

Lead
"D100"

"D100a"

Project

"Smith"

"D200"

n3

n1

n4 n5

n10 n11 n12

n20n19

"Sato"
Name

ProjectLead

Lead LeadName

Project

"A100"

n6

n16 n17 n18

n24n23n22n21

"Chen"

Department

n7Name

Name

"Ivanova"

Web

n0
Projects

Project n8

n9
Lead

"Dubois"

n13 n14
Web

n15

"A100b" "Adamo""A100a"

"http://""Design"

"http://"

“Retrieve all department names”

E = Projects ◦ ↓ ◦ Department ◦ ↓ ◦ Name

E(D) = {(n0, n3), (n0, n7)}
E(D)(n0) = {n3, n7}

XPath Algebra
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“Retrieve all projects which are sub-projects of 
projects with a website”

XPath Algebra
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“Retrieve all projects which are sub-projects of 
projects with a website”

E = Project[↑ ◦ Project ◦ ↓ ◦ Web]

XPath Algebra
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“Retrieve all projects which are sub-projects of 
projects with a website”

E = Project[↑ ◦ Project ◦ ↓ ◦ Web]

E(D) = {(n17, n17), (n18, n18)}

XPath Algebra



Upward-k Algebras

↑
↓

Upward-k Algebras:  for k >= 0, U(k) is the 
fragment of the XPath-Algebra with expressions 
that do not use the   primitive and have at most 
k uses of the    primitive in a “path”
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“Retrieve sub-project leaders”

E = Lead[↑ ◦ Project ◦ ↑ ◦ Project]

Upward-k Algebras
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“Retrieve sub-project leaders”

In U(2) but not in U(1)!

E = Lead[↑ ◦ Project ◦ ↑ ◦ Project]

Upward-k Algebras



Language Indistinguishability

F F

F

E

(n1,m1) ≡F (n2,m2)

(n1,m1) ∈ E(D) ⇐⇒ (n2,m2) ∈ E(D)

For fragment    of the XPath algebra, we say node 
pairs (n1, m1) and (n2, m2) are indistinguishable 
by      if for any expression     in    , it is the case 
that



Coupling P(k) and U(k) Indistinguishability

Coupling Theorem:  

Proof:

P(k) indistinguishability implies U(k) indistinguishability, 
via induction on U(k) expressions

P(k) distinguishability implies U(k) distinguishability, via 
construction of partition-block labeling expressions

Let D be a document and k ∈ N. The P (k)-partition of D
and the U(k)-partition of D are the same.



Block-Union Theorem:  

... follows directly from Coupling Theorem

Let D be a document, k ∈ N, and E ∈ U(k). Then there
exists a class BE of partition blocks of the P (k)-partition
of D such that E(D) =

⋃
B∈BE

B.

These results provide a precise linguistic 
characterization of A(k) and P(k) partitions, in 
answer to question (1).

Coupling P(k) and U(k) Indistinguishability



Now let’s consider question (2):

 How are U(k) expressions to be 
evaluated with the help of P(k) 

partitions?



Upward Algebra Eval

for expressions in U(k), direct look-up in P(k) index

for expressions in U(l), l > k, then by decomposition 
into U(k) sub-expressions and joining sub-results



Finally, let’s consider question (3):

 Can these results be bootstrapped 
to provide general techniques for 

evaluation of full XPath?



XPath Algebra Eval
Via predicate elimination and inversion of 
remaining “downward” subexpressions into 
Upward-Algebra subexpressions:

its U (k) sub-expressions or those that are easily converted to U (k) expressions
using rewrite rules. For each such expression, we are then guaranteed by the
Block-Union Theorem that its value is the union of an appropriate set of blocks
of the P (k)-partition. If we then have a method to quickly identify and return
partition blocks, we will have an efficient way of evaluating these expressions.
We return to this issue in the next section. In this section, we focus on the
development of general techniques for using P (k)-partitions in the evaluation of
arbitrary XPath algebra expressions.

3.1 Evaluating Upward Expressions

If our given XPath expression is in fact a member of U (k) then no decomposition
is necessary. However, if we consider a U (j) expression of the form E = A1 ! ↑
! . . . ! ↑ !Aj where j > k, then such a query is not directly supported by the
P (k)-partition. Nevertheless, we can decompose it into sub-expressions that are
in U (k). For example, consider the P (2)-partition available and the expression
E1 = A1 ! ↑ A2 ! ↑ !A3 ! ↑ !A4 in U (4), then E1 contains sub-expressions F1 =
A1 ! ↑ !A2 ↑ !A3, and F2 = A3 ! ↑ !A4 which are both in U (2). As such, they
can be directly evaluated using the P (2)-partition as E1(D) = F1(D) !" F2(D).

3.2 Evaluating Downward Expressions
In practice, most XPath expressions use navigation just along the parent-child
(↓) axis. Consider the XPath sub-algebra D which is defined as the set of all
XPath expressions in which the ↑ primitive does not appear (and the D(k) al-
gebras defined analogously to the U (k) algebras). For such queries, we cannot
directly utilize the Block-Union Theorem. However, we can convert downward
navigation into upward navigation by using a technique which we will refer to as
“inverting expressions.” We will illustrate this technique on downward expres-
sions with and without predicate operations. For this discussion, we consider
downward expressions to be in the D(k)-algebra which is defined in complete
analogy with U (k), except that the ↓ primitive is permitted, but not the ↑
primitive.

Downward Expressions without Predicates Downward expressions with-
out predicates can be “inverted” into expressions in corresponding upward ex-
pressions without predicates using the rewrite rules shown in Table 2.

E → E−1

ε → ε
∅ → ∅
↓ → ↑
λ̂ → λ̂

E1 ∪ E2 → E−1
1 ∪ E−1

2

E1 ∩ E2 → E−1
1 ∩ E−1

2

E1 − E2 → E−1
1 − E−1

2

E1 ! E2 → E−1
2 ! E−1

1 .

Table 2. Inversion Rewrite Rules for D .

So, given a downward expres-
sion E ∈ D(k) without predicates,
we can rewrite E into E−1 which
is in U (k) and also has no predi-
cates. We can then obtain E(D) by
first computing E−1(D) and then
considering its inverted result. Now
since E−1 is an expression in U (k),
we can directly apply the evalua-
tion techniques for U (k) expres-
sions discussed above.

then proceed as before with Upward-Algebra eval



XPath Algebra Eval
Suppose we have a document D, the P(2) partition of D, and the 
query ↓ [↓]



XPath Algebra Eval
Suppose we have a document D, the P(2) partition of D, and the 
query ↓ [↓]
then ... ↓ [↓](D)



XPath Algebra Eval
Suppose we have a document D, the P(2) partition of D, and the 
query ↓ [↓]
then ... ↓ [↓](D)

↓ " ↓ " ↑ (D)



XPath Algebra Eval
Suppose we have a document D, the P(2) partition of D, and the 
query ↓ [↓]
then ... ↓ [↓](D)

↓ " ↓ (D) ↑ (D)

↓ " ↓ " ↑ (D)



XPath Algebra Eval
Suppose we have a document D, the P(2) partition of D, and the 
query ↓ [↓]
then ... ↓ [↓](D)

↓ " ↓ (D) ↑ (D)

↓ " ↓ " ↑ (D)

((↓ " ↓)−1(D))−1



XPath Algebra Eval
Suppose we have a document D, the P(2) partition of D, and the 
query ↓ [↓]
then ... ↓ [↓](D)

↓ " ↓ (D) ↑ (D)

↓ " ↓ " ↑ (D)

((↓ " ↓)−1(D))−1

(↑ " ↑ (D))−1



XPath Algebra Eval
Suppose we have a document D, the P(2) partition of D, and the 
query ↓ [↓]
then ... ↓ [↓](D)

↓ " ↓ (D) ↑ (D)

↓ " ↓ " ↑ (D)

((↓ " ↓)−1(D))−1

(↑ " ↑ (D))−1 (↑ " ↑ (D))−1 !" ↑ (D)

... and this can be evaluated directly with the P(2) parition



Research Directions
Currently developing new data structures 
leveraging these results

- develop fast P(k) partition block look-up 
algorithms

Further study of query decomposition and 
inversion algorithms

Study workload driven index creation

Study localized branching-path queries and 
develop appropriate index structures



Thanks!

Questions?


