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Plan for the Query Optimization topic

» Steps in declarative query processing
* Query optimization techniques
* Heuristic optimization
— translating SQL into relational algebra
— Reordering of operations
— Heuristic optimization algorithm
* Cost based optimization
— Cost functions of relational algebraic operations
— Left deep tree
— The cost based optimization procedure
* Readings from the textbook:
Chapfter 15,
» Chapfters 13, and 14
— Sections: 13.2, fo 13.8, and

— Sections: 14.1fo 14.5
File Organization — COMP201
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What is Query Optimization and Why

» Whereas declarative query languages (including SQL)
offer a great comfort for users, they place a
considerable burden on a Query Processor

» The Query Processor is responsible to produce an
execution plan that will guarantee an acceptable

response time

» Choosing a query execution plan is called Query
Optimization and it mainly means making decisions

about data access methods

* Query Optimization strongly relies on File

Organization techniques
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Typical Steps in Query Processing

Scanning (identifying tokens)

]!

Parsing (syntax checking of SQL keywords)

U

Generating query tree of logical operators

Validation

Iy
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Tokens are
SQL keywords,
attribute and
relation names

Attribute and
relation names
are checked
against Catalog
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Typical Steps in Query Processing

Optimization (looking for an execution plan)

U

Generating query tree of physical operators

]!

Query code generating

]!

Query execution
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Query Optimization Technigues

» Of the eight query processing steps, we shall explicitly
consider only:

— generating query tree of logical operators, and
— optimization step
and implicitly
— Generating query tree of physical operators
« SQL queries are typically:
— first decomposed into query blocks

— translated to an equivalent relational algebra expression, and
represented as a query ftree of logical operators

— blocks are separately optimized

— only nested queries have to be decomposed into query
blocks, where each SELECT command constitutes one block
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Query Optimization Techniques

« There exist two main query optimization techniques

* One relies on the heuristic reordering of the relational
algebra operations, and

» The other involves systematic estimating the cost of
the different execution plans, and choosing one with
the lowest cost

» Cost based optimization combines both techniques,
starting with heuristic and finishing with cost based
technique
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Translating SQL into Relational Algebra

1. For each SQL query, query parser generates an
initial query tree of logical operators

2. ltis called a canonical query, as well, and it is not
optimized

3. In most cases, direct execution of a canonical query
would be very inefficient
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Heuristic Optimization - an Example

» Consider the following relation schemas
N,({A B, C, D}, {A}),
No({A, E, Q}, {AE}),
N;({E, F, G} {E F})

and the SQL query

SELECT C
FROM N, N, N,

WHERE F="'f' AND N,, A= N,AAND N,E= N,E
AND D> 'd'";
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Initial Query Tree

Te

O-F=‘f’DNl.A=N2.ADN2.E=N3.E OD>'d’

Legend:

Tree /,/’///’

Base
relation
r(N,)
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Structure of the Initial Query Tree

» A query tree of logical operators is a binary tree

» The nodes of that tree are logical (relational algebra)
operators

» Lower level nodes, starting from leaves, contain
Cartesian product operators

» These are applied onto relations from the SQL FROM
clause

» After that are (relational) select and join conditions
from SQL WHERE clause to upper tree nodes applied

» Finally is project operator of the SELECT clause
attribute list to tree root applied
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A Question for You

« For how many N;tuples asks the query from our
example:

a) Many
b) Only Pavle knows
c) At most one
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Analysis of the Initial Query Tree

» According to the initial query tree structure, two
Cartesian products should be executed first

 But this query asks for only a few tuples from r(N,)
(D> "d’), and even for at most one tuple from r(/N,)
(F="r)

* Main heuristic rule is to apply unary operations select

and project before binary operations like join and set
theoretic operations, and before aggregate functions

» Hence, move select operations down the tree
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Query Tree After Moving Down Selects

Y N2._ET = N3.E_ 1. T
X
/ \
o N1. A=N2. A Of -+ Further improvement
| | can be achieved by
x r(Ny) replacmg each

= Cartesian product
el ~. followed by a select

Ops .y - [ r(N,) ] accoro_llng t(_) a join
=5 condition with a join

operator

r(N,)
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Query Tree After Introducing Joins

e
[><].N2- E=N3.E Next improvement
/ \ can be achieved by
switching the
D><INi A=N2 A Or_ positions of N, and

N5, so that the very

/ \ \ restrictive select
Ops ey [ ‘(N,) ] operation

OF =

could be applied as

early as possible
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Question for You

 What is the rational behind an attempt to apply a
restrictive select operation as early as possible:

1. All further operations will use less tuples and thus perform
faster

2. The result will be more accurate
3. The optimization will be more complex to understand
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Query Tree After Switching Positions

T

A

><dN2A=NLA

e

>< N3.E = N2.E

/

Ganf)

I r(N) I
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Final improvement

can be achieved by
keeping in intermediate
relations only the
attributes needed by
subsequent operations
This can be
accomplished by
applying defined, or
even introducing new -
undefined (but logically
implied) project

(TY

operations as early as
possible
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Query Tree After Introducing Project Ops

>< N2.A = N1.A

| Thic

T2 A

>< N2.E = N3.E

AN

Tho A E)

Op -

r

—

r(Ns)
—
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I r(N,) I
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Tl\1.(a, C)

I

0-D>Ld ¢

I r(Ny) I
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Effect of Project Operations

» Performing project operations as early as possible
brings an improvement in the efficiency of query
execution

» Because tuples get shorter after projection, more of
them will fit into the block of the same size

» Hence, after projection, the same number of tuples
will be contained in a smaller number of blocks

» As there will be less blocks to be processed by
subsequent operations, the query execution will be
faster
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Cost Based Optimization

* A good declarative query optimizer does not rely
solely on heuristic rules

It chooses that query execution plan which has the
lowest estimated cost

 After heuristic rules are applied to a query, there still
remains a number of alternative ways to execute it

* Query optimizer estimates the cost of executing each
of alternative ways, and chooses the cheapest one
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Cost Components of a Query Execution

Secondary storage access cost:

— reading data blocks during data searching,

— writing data blocks on disk, and

— Storage cost (cost of storing intermediate files)

Computation cost (CPU cost)
Main memory cost (buffer cost)
Communication cost

Very often, only secondary storage access cost is
considered

So, the cost C will be the number of disk accesses
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Cost Related Catalog Content

For the purpose of a query cost estimating, a Catalog
should contain following information for each base
relation:

— the number of tuples (records) r

— the number of blocks b

— the blocking factor 7

— the primary access method and primary access attributes:
* unordered
» ordered (just sorted, or indexed, or hashed)

secondary indexes and indexing attributes
the number of levels of each index
the number of distinct values d of each attribute
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Some Assumptions

» For the sake of simplicity, we shall suppose that:
— All tuple fields are of a fixed size (although variable field size tuples
are very frequent in practice)
— All the intermediate query results are materialized (although there
are some advanced optimizers that apply pipelined approach)

* Materialized intermediate query results are stored on a disk as
temporary relations

* Whereas pipelining means that the tuples of the intermediate results are
subjected to all subsequent operations without temporary storing

— Intermediate results of unary operations retain the same block size
as the initial files
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Cost Function of a Project Operation

» Suppose the <attribute_list> of a project operation
contains a relation schema key or the keyword
DISTINCT is not used in the SQL SELECT command,
then:

— Project operation reads b, blocks, containing rtuples of the
size n, from the secondary storage unit into main memory,
and

— Writes back b, blocks, containing r tuples of the size m (m <
n) on to secondary storage

— Since m < n, it follows b,< b,
— The cost function is
C=b,+0b,
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Cost Function of a Select Operation

* Let s(0< s<r) be the number of tuples that satisfy

selection condition

In a general case, select operation is performed by
reading a number p (s< p< r) of tuples, contained in
b blocks, where [ p/f | < b, and writing back s tuples
as| s/f | blocks

Cost function of a select operation strongly depends
on:

— how restrictive the condition of select operation is, and
— available access methods
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Cost Functions of Join Operation

» The join operation is one of the most time consuming

operations in query processing

« We shall consider joins N><,. M, where Nand Mare

relations, and jcis a join cond/ition of the form N.Y'=
MY

Nis called outer loop relation, and Mis called inner
loop relation

» There are four basic join algorithms:

— Nested - loop join
— Single - loop join
— Sort - merge join
— Hash join
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Join Selectivity

Join selectivity, denoted as /s, is

js=INe<, M|/ |NxM|

Js=|Nv>< Ml (ry'ry)

0<js< 1

The size of the result of join is

IN><. M| = /s™(ry"1y)
If Yis a key of N, and the referential integrity constraint M[Y] O
N[Y]is satisfied, then

IN>< M| < 1y,

and js< 7/ry
But, if Yis not a key of A, or referential integrity constraint

M[Y]10O N[Y]is not satisfied, then /s has to be determined
according to the circumstances given
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Question for You

If Yis a key of N, and the referential integrity
constraint M[Y] 0O N[Y]is satisfied, then

IN><, M| < 1y,
That statement is true:

a) Because each M tuple joins at most one N tuple
b) According to the first law of Black Magic
c) Because nobody can understand it
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Nested - Loop Join

 Algorithm
For each tuple £in N (outer loop relation), retrieve each tuple
v from M (inner loop relation), and test whether the two tuples
satisfy join condition jc (whether ([N.Y] = u[M.Y])
 Let n(n> 2) be the number of buffers available for
storing:
— n-2out of b, outer relation blocks at once
— 7of b, inner relation blocks, and
— 7of [(js*(ry*ry,))/f] result blocks

in the main memory
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Nested Loop Join — Three Buffers

Main Memor
Y A Relation
N N
Buffer 1| Block 1 | €= N
Block 1
/\
Q&gﬁ”/ Buffer 2 [Blocks 1- p
ook 1 \ Block m
Buffer 3| Block 1 m
Block q N—M
~— Block 1
For each of m relation N block, all Block p
relation M blocks are transferred N
into main memory, so mp
accesses
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Cost of Nested - Loop Join

C=by+ byl byl(n-2)1+ [(s*(ry )]

» The number of buffers n has considerable impact on
the number of disk accesses C

* Since that
byl byl(n-2)1= byl by, I(n-2)]
the number of disk accesses C will be smaller if

by < by,
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Single - Loop Join

 Algorithm:

— Suppose an index (or hash key) exists for join attribute M. Y of
the inner relation M/

— Then retrieve each tuple of the outer loop relation N and use
the access structure to retrieve directly all matching tuples of
the inner loop relation M/

* The single loop join cost function will be
C= by+ ry*f(index) + [ (js*(ry )/ f]
where f(/ndex) depends on the relation //index type
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Single Loop Join

« To implement the algorithm, there are at least four
buffers needed:
— For each relation one,
— One for index, and
— One for the join result

* The efficiency is mostly influenced by the product
ry T (index)

» After a relation is selected or projected, it can not be
used as an inner loop relation in the single loop join

algorithm, since the index addresses relate to the
blocks of the original relation
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Sort - Merge Join

 Algorithm:
— Sort the Nand Mrelations (m + 7 buffers needed, m> 2)
— Read successive and sorted blocks of Nand M into memory
— Compare successive Nand Mtuples from the blocks red in
— Put the tuples that match into join result

» Cost of sorting the Nand Mrelation is
C=2by(1+!log, byl + 2b,,(1+|log,, b,,])

« Cost of the comparisons and of the writing back the
result is

C= by+ by, + [(js*(ry ry))f]
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Hash Join

The hash join may be an efficient algorithm if there is enough
available memory space

There are many variants of the hash-join algorithm
We shall consider three of them:
— Partition Hash Join (lecture),
— In Memory Partition Join (tutorial), and
— Hybrid Hash-Join (tutorial)
Generally, a hash join consists of two phases:
— Partitioning phase, and
— Probing (joining) phase
Consider an equi-join of relations Nand Mon Aand B
N><,_ M
and a function A that hashes each Nor Mtuple into one of m
partitions
Hashing is done on the join attributes
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Partition Hash Join (partitioning phase)

» Both relations Nand M are split (one after the other)

into m partitions using the same hash function A

- That way, partitions N, and M, contain tuples that are

equivalent with regard to A, and a tuple from N, may
join only with some tuples from V,

» The partitioning phase requires m+ 7 memory

buffers:
— One buffer for the input block, and
— m buffers for partitions

. _The number of disk accesses in the partitioning phase

is:
2(by+ by)
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Partitioning Phase - Diagram

| N First N then M

First all N; then all M,

buffer,,

X

Input buffer Main Memory

A
<
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Probing (joining) Phase

Pairs (N, M) of partitions are joined one after the other and
stored into join result (miterations needed)
Probing phase needs n= b, + 2 buffers:

— b;buffers to store all the blocks of the largest partition of the smaller
relation,

— 7input buffer to store a block of the corresponding partition of the
other (larger) relation, and

— 7 buffer for the output (join result)

The algorithm:
— Reads in the whole partition of the smaller relation (say N,), first
— Then reads in one block after the other of the partition M,

— Takes each tuple from the input buffer and probes for the matching
tuples in the b, buffers

— The matching tuples are joined and placed into the output buffer
The cost of the probing phase is by, + b+ b,
So, the total costis C= 3 (by+ b)) + Do
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Probing Phase - Diagram
>

joined tuples w .probing |

Output buffer

buffer,,

Input buffer Main Memory

lteration i =2 “m
out of m
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Question for You

* We considered four join algorithms:
— Nested Loop Join (exhaustive search),

— Single Loop Join (B-tree, not applicable after select or
project),

— Sort-Merge Join (sort is expensive),

— Hash Join (high demand on memory buffers)
* How to find the most effective?

a) Take any, the result will be wrong anyway

b) Copy from a peer

c) Calculate the cost of using each of them and take the least
expensive
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Combining the Optimization Techniques

» The cost based optimization is applied onto the query
tree that is a result of the heuristic optimization

» By means of the cost based optimization, there are
mainly:
— Implementation methods of select operations, and
— The order of multiple joins and their implementation methods

examined
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Left Deep Trees

« Joining m (m> 7) relations requires (m- 7) joins
 These (m- 7) joins can be accomplished in many
different orders

» Optimizer considers only left (or right) deep join trees,
and takes into account the heuristic optimization rules

» A /eft deep join feeis a binary tree where the right
child of each non - leaf node is a base relation or the
result of a select or project (but not of another join)
operation
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Left Deep Tree - An Example

e

>< N2.A = N1.A

e

> < N3E=N2E Op>g

)
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Nested Query Optimization

» Optimization of a nested query depends on whether it
is correlated or not

— In a non correlated nested query, the result of the inner
SELECT has to be computed only once, and each tuple of
the outer SELECT is compared to that result

— In a correlated nested query, inner SELECT is evaluated for
each tuple of the outer SELECT

— Namely, result of the inner SELECT depends on the attribute
values of the current outer SELECT tuple
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Query Tree of Physical Operators

* Query tree of physical operators is produced when
the cheapest execution plan is provided with access
methods and algorithms to be used in executing the

relational algebra operations

COMP302 Database Systems
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Query Tree of Physical Operators (Example)

e

>< N2.A = N1.A

e

Since DISTINCT,
Use Sort and Drop
Duplicates

Use Sort-
Merge Join
>< N3.E = N2.E

Use Nested-
Loop Join / \

Oc_«
Use B-tree F !

onF
[~ )
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Use Multi-List
o with B-tree on
D
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Summary

 DBMS processes the declarative query by converting

it to a query tree of logical operators, and by
optimizing it

Query optimization is a looking for a reasonably
efficient strategy to implement a query

Heuristic optimization and cost based optimization are
two basic optimization techniques
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Summary (heuristic optimization)

« Heuristic optimization converts a declarative query to
a canonical algebraic query tree, that is then gradually
transformed using certain rules

The main heuristics is to perform unary relational
operations (selection and projection) before binary
operations (joins, set theoretic), and aggregate
functions with (or without) grouping
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Summary (cost based optimization)

» Cost based optimization is applied to the result of

heuristic optimization

By means of cost based optimization are mainly:
— implementation methods of select operation, and
— order of multiple joins, and their implementation methods

defined

Cost based optimization means a rather exhaustive
analyzing the number of disk accesses of alternative
available methods and algorithms to execute a query
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Plan for Transaction Processing topic

Transaction processing basics

Database transaction

How transactions influence database consistency
— Lost update problem

— Dirty read problem
— Unrepeatable read problem

Schedule
Serial and serializable schedules

Serializability test

— Readings from the textbook:
— Chapter 19
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Relationship Between b, r, f

* The relationship between the number of blocks 5,
number of records 7, and blocking factor 7 is

b=[rif]
* Let(a,..., a,) be atuple, and / the size of g,in bytes,

then
L=>1
i=1

is the storage capacity needed to store a tuple
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The Effect of Projection

» The storage capacity needed to store one block of
tuplesis B=L*f
 Let B,=L,f,, and B,= L,, be given
- fL,> L, and B,= B, then
> 1

 Letr, L, f,and r, L, 7,be given
e Ifr,=r,L,>L, and B,= B, then
b,> b,
» S0, the project operation drops some fields in tuples,
there will be less blocks after projection
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Evaluation of DISTINCT Project

* Suppose the <attribute_list> of project operation does
not contain a relation schema key and the keyword
DISTINCT is used in the SQL SELECT command,
then:

— Reading of b, blocks, and writing back b, blocks occurs again
(as in the case when DISTINCT is not specified), but the
duplicate tuples have to be eliminated from b, blocks, as well

— Eliminating duplicate tuples asks sorting of 6, blocks

— Finally, omitting duplicate tuples will require reading in b,
blocks and writing back 6,, where b, is the number of blocks
with duplicates omitted
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Cost of DISTINCT Project Operation

» The cost of initial reading of b, blocks, and writing
back b, blocks is:

C,=b,+b,
« The worst case cost function of sorting b, blocks is
C,=2b,(1+log, b,)
» Omitting duplicate tuples will require
C3=b,+ by
where b;is the number of blocks with duplicates
omitted

» Assuming the m~way sorting (/m > 2), the total cost
will be:

C=b,+ b,(4+2] log,, b,]) + b,
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Attribute Selection Cardinality

If an attribute A of relation schema Nhas d(A)
distinct values, then its selection cardinality s (A) is

s(A)=rld(A)
« Forakey K d(K)=rands(K)=1
 |f an attribute Ais not a key, then, for r> 7,
s(A)=(rld(A)) > 1
» Selection cardinality s (A) of the attribute A, allows us

to compute how many tuples is expected to contain a
given value

a1, (N)
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Selection Cardinality

» Consider relation Studenthaving 7,000 tuples, then
— d(StudID) = 1,000, and s (StudlD) = 1
— d(Sex)=2and s(Sex) = 500
— d(StudName) = 800, and s (StudName) = 1.25
» Consider relation Grades, having 70,000tuples, and
suppose
— d(PaplD) = 20,
— Grade O{A+, A, A-, B+, B, B-, C+, C},
* then:
— s(StudID) = 10
— s(PapID) = 500
- S(Grade) = 1,250
— s(StudID, PaplD) = 1

COMP302 Database Systems Query Optimisation_04 56

Cost Functions of Select Operation

» Linear search (no indexes neither hash functions
provided)
C=b+[s/f]
» Unique key index :
— and K=k (* selection condition *)
C=x+ 1+[1/f]
— and k,< K< k, ("suppose s tuples satisfy condition®)
C=x+s+|s/f]
» Hash key, and K= k(all synonyms fit into 7 bucket)
— C=1+[17/f] (*static hashing®)
- Cc=2+[1/f] (*extendible hashing*)
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Cost Functions of Select Operation

» Clustering index, and secondary key Y=y
(s (Y) successive tuples satisfy condition)

C=x+[s(V)fl+]s(Y)If]

» Secondary index, and secondary key Y=y
(s (Y) random tuples satisfy condition)

C=x+s(Y)+[s(Y)If]
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Select Operation Methods

* A select operation may be executed either using a
linear search or an index algorithm

« Suppose b,=1r,If, ], s (selection cardinality), and the
height x of the index tree are given

» The index search algorithm will be more efficient if the
inequality

x+s<b,
evaluates true
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Avoiding Sorting with DISTINCT

» A costly sort can be avoided if there exists an

appropriate secondary index on the whole SELECT
DISTINCT <attr_list>

Then, the query optimizer has only to perform index
search, to retrieve the secondary key values, and
write them back as an intermediate file

So, let x be the height of the secondary index on Y=
<attr_list>

* The total cost will be:

C=x+s(Y)+[s(Y)IF]
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The Order of Select and Project Ops

One may pose the question whether a select or a
project operation should be executed first in order to
achieve minimal overall query cost

Suppose b,=[r,If, ], s (selection cardinality), and £,
(blocking factor after projection) are given

Select first using linear search, then project
C(on=lrif, 1+[sif, 1+[slf, 1+[slf,]
Project first, then select

c(moy=lrif, 1+[r i, 1+[r 1, 1+[s/If,]
So

Clom<C(mo) «sif,1<[rif]
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The Order of Select and Project Ops

- Suppose b,=]r,If, |, s(selection cardinality), and £,
(blocking factor after projection) are given

» Select first using index search, then project
C(on=x+s+[sif, 1+[sif, 1+[s/f,]

» Project first, then select using index search is not
possible, since after projection the index cannot be
used any more
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Join Selectivity (an Example)

N M N >< M

Al B B| C A| B| B| C

1 1 7 7 7 7 7 7

ol 2| P3| 7] 2 = 7171 1] 2

5| 3 2| 3 ol 2| 2| 3

2| 4 0| 2| 2| 4

3| 5 513| 3| 5

=31, =6, 3| 6 51 3| 3)| 6

Since relation N key is B, and referential integrity M[B] O N [B ] is
satisfied, | N>IM|=r1,=6

IS=INDIM|I(ry*ry)=ryu/ (ry*ru),
hence js=1/r,=0.33
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Join Selectivity (an Example)

N B is still the key of N,, but
A| B N, referential integrity M [B ] O
7 7 A | B | N.[B]isnotsatisfied, so
0!l 21 0a=0 (N) = ; } join selectivity is

js=1/dyB)
5|3 where d,(B ) is the number
M of (distinct) B values in M,
B| C and an even distribution
71 7 of B values in M is
supposed
N 712 IF\)IE) >< M
1
YR 213 A|lB| B|C
> 2 DI | 2| 4 = ol 2| 2| 3
3|19 0| 2| 2| 4
3| 6
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The Size of the Join Result Block

The result of an equi - join is a set of tuples over a concatenation
of relation M and relation M attribute sets

So, if the relation Mtuple size is L,, and the relation Mtuple size
is L,, then the size L of the join result tuple is:

L=Ly,+L,
If the blocking factor 7of the join result is given, the size of the
join result block will be
B=L*f
If the size of the join result block is given, then
f=1B1IL]

Note that block sizes of the Nand Mrelations may be equal to B,
but may be different, as well
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Nested Loop Join — Four Buffers

Main Memor -
Y ~Relation ~\
‘\/
Buffer 1 [ Block 1 N
Block 1
/\
émn/ Buffer 2| Block 2 Block 2
= lock 1 Buffer 3 |Blocks 1-p ikm/
Buffer 4 | Block 1 m
Block q N M~
— /_// Block 1
Each two successive blocks of
the relation N are transferred in
the main memory, so all relation Block p
M blocks are transferred into the N~

main memory only m/ 2 times
N (mp/ 2 accesses )
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Cost of Nested Loop Join (an Example)

* Let:
- ry= 600, b= 60,
- n,= 5000, b,,= 1000,
- n=5
blocking factor of join result = 70,
join condition attribute Y be the key of N, and
referential integrity M[Y] O N[Y] satisfied
« Then:
« join selectivity js= 7/ 600
— cost of N>« Mis:
60+ 10001 60/ 31+ ((1/ 600)(600*5000) 1 10) = 20,560
— cost of M>< Nis:
1000+ 601 10001 31+ (11 600)(600*5000) | 10) = 21,540
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Single Loop Join

<>
Join
Result

buffer .

value of the jOin attribute \

buffery »  buffer, buffer,,

blocky, addr% blocky,
Index

block,, blockyyy,
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Index Function f(index)

f(index) = x+ 17, for a unique key index on M. Y,

f(/index) = h, and 7< h< Z2for a hash key on M.Y,

f(index) = x+ s(M.Y)/7, for a clustering index on
M.Y,

f(index) = x+ s(M.Y), for a secondary index on M.Y,
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Nested Loop Versus Sort/Merge

C(nest) = b, + bl b,/(n=2)| +[|N><aM|/f]
C(sort) = b,(3+ 2llog, b,1) + b,(3+ 2llog,, b,]) +
[IN><M|/F]

Suppose b,= b,= b, then
C (nest)<C(sort) = b< (n=2)(5+ 4[log,, bl)

Suppose b,<< b,, then
C (nest)<C (sort) = b, < (n-2)3+ 2[log, b,])
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Comparing Nested and Single Loop

« C(nest)=b,+ b, b,/(n-2)] +[|N><M|/f, ]
« C(single) =[r,If, 1+ r, *f(index;) +[IN><M|/F, ]
 Letit be:
— £,*f(index;) > 10, (* then is r,*f(index;) >> b = r, If,1%)
- b,<< b,, and

— the difference between [ |N><M |/f | values for single and
nested loop joins is negligible

* Then, when the following inequality evaluates true, it
is worth examining in more detail replacing a nested
loop with the corresponding single loop join

r,*f(index;) < b,| b,/(n-2)]
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Sort/Merge Versus Single Loop

« C(sort)=b,(3+ 2l log, b, 1)+ b,(3+ 2] log, b,]) +
[INs<M|If,]
. C(single) =|r,if |+ r,*f(index;) + | |N><M|If]
« Letit be:
— £*f(index;) > 10, (thenis r,*f(index,) >> b,=[r,If, )
- b,<< b,, and

— the difference between [ |V ><M |/f | values for single loop
and sort/merge joins is negligible

* Then, when the following inequality evaluates true, it
is worth examining in more detail replacing a
sort/merge with the corresponding single loop join

r.*f(index;) < b,(3+ 2l log,, b, 1)
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In Memory Partition Hash

* If the number of buffers available is n> b, + 2 then is
the partitioning phase not needed

* The smaller relation is loaded into memory and stored
in a hash table

» The blocks of the larger relation are read into memory
one after the other

« Each tuple of the current block is hashed on its join
attribute and the matching tuples are sought in the
corresponding bucket of the hash table

« The total costis C= by + by, + b
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Hybrid Hash Join

Suppose the number of buffers available is

m+ b,
where b, is the number of blocks in the partition N, of the
(smaller) relation N

In the first pass of the partition phase, partition N, is computed
and loaded into b, buffers, whereas m — 7 buffers are used to
build partitions N, to A, and store them on disk

In the second pass of the partitioning phase, partition A, still
occupies buffers, and m — 7 buffers are used to build partitions
M,to M_ and store them on disk

Whenever a Mtuple hashes to M., it is probed against V, tuples
and (eventual) join is placed in the result buffer

In the probing phase are remaining m — 7 partition pairs joined
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Hash-Join Versus Other Algorithms

Providing that there is enough memory buffers
available, partition hash-join may outperform all the
other join algorithms

Suppose b, << b, then

— (lhash) < Qnested) = 3<[b,/(n-2)]
— ((sort) < Chash) =[]

— (lhash) < ((single) = 3b,< r,*f(/index)
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Hash-Join Buffer Requirement

« But, even the Partition Hash-Join that is the modest
one regarding memory requirements, needs

n=b+2
buffers for the probing phase, where
b;=1 bpf(n-17)]
is the number of blocks in the largest partition of the
smaller relation N, and m= n- 7is the number of
partitions

* S0, supposing a perfect uniform distribution of tuples
among the partitions, the following has to be satisfied

(n-2)n-1)2 by
in order to perform a Partition Hash-Join
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Comparing Costs of pjp and jp

It is not always justified to perform project of the inner
loop join relation before performing join

« Consider:
C(pjp) = C(prM) + C(NjoinM, ) + C (prj (NjoinM; ))
and
C(p) = C(NoinM) + C (prj (NjoinM ))
in the case of nested loop join algorithm
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Cost of the Set Theoretic Operations

* Generally, union, set difference, and intersection
require first to sort relations Nand M/

» After sorting, relations have to be red into main
memory, block by block

» Then the tuples from these blocks are compared

» Tuples that satisfy the condition of the operation in
question, are output into result relation

* The cost function is computed in a very similar fashion
as for sort - merge join

* The only difference is in computing the number of
result relation blocks b
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Cost of the set theoretic operations

» The number of blocks b of the result relation depends
on the type of the set theoretic operation

— For union N Moperation, 0< b< b, + b,
— For set difference N\ Moperation, 0< b< b,
— Forintersection N n Moperation, 0< b< min (b, b,,)

* Due to the huge cost, the optimizer avoids execution
of the Cartesian product operation, unless forced to

(if FROM clause contains more relations, and there is
no join condition in the WHERE clause)
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Cost of aggregate functions

Executing just one aggregate function (without
grouping) requires reading all b blocks into main
memory and outputing just one result block, so

C=b+1
Executing an aggregate function with grouping
requires preliminary sorting of the relation, unless
there exist appropriate access structure on the whole
<group_list> (like cluster index) that makes sorting
unnecessary

Then reading all b6 blocks into main memory, and

Finally (supposing that grouping attributes have
selection cardinality s) to output|[ s/ | blocks
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Left Deep Tree

Even for m= 3, there are, in principle, 6 left deep join trees to be
considered:

- (Np<N) ><a N (N> N) ><a N
- (Np<Ny) ><a N, (Ng><N) >< N,
- (M,><aNy) >aN, (N;>< N >< N,

The number of joins to be analyzed can be smaller, if there is a
select O operation applied to say N, so that:
Oc(N;) < Nand G (N;) < N;
Then only
(N,><N,) ><a N,
(Np<Ny) >N,
have to be considered
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VICTORIA UNIVERSITY OF WELLINGTON
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Query Optimization

Extra Tutorial

Lecturer Dr Pavie Mogin

COMP302
Database Systems

Query Optimization Example

N7({A, B, C1 D}’ {A })
N,({E F, G, A} {F})

SELECT C, G FROM N1, N2

WHERE N1.A=N2.AAND E < ‘¢’
ORDER BY C;
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Heuristic Optimization Tree

T o 2 SORT

A

>< N2.A = N1.A

AN

T[A, G T[A, c

|GE<‘e’ I Ny I
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Cost Optimization

» Cost optimization should follow closely (but not strictly) result of
the heuristic optimization

« So, given:
— Tuple sizes, numbers of tuples,
— Size of the buffer pool, maximum size of a block,
— Selection cardinalities,
— Indexes,...

calculate the smallest cost of:
= Ogce (N)

- T[A,G(Nz)

- T[A,C(Ni)

>< jza=wn1a
— Tl o(N,><IN,)
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Cost of a SELECT

* First calculate:

— The number of N, and N,blocks
— The number of buffers available

« Calculate O¢. ... (N,):
— Suppose perfect uniform distribution and find how many N,
tuples satisfy E < ‘e’ condition

— Choose between:
* Alinear search, and
* Anindex search

— Using formulae:
* C(linear) < C(index) = b < x + s (for secondary index)
« C(linear) < C(index) = b < x +[s/f] (for cluster index)
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Cost of a Project

« When calculating the cost of TT; ;(/N, ), the number of
input blocks should be determined by the output from
the previous operation (which was Oc. ... (N,)

« Use formulae:

— C(project) = b, + b,
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Cost of a Join

» |Inputs are outputs of previous operations (two
projects in the case considered)

 First calculate the join selectivity and the blocking
factor of the output

* Mind that equi join retains all columns

« Then compare the costs of two (out of four) join
algorithms

» Compare the cost of the winner with the next

* Mind, the partition hash join is very greedy on
memory space
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Cost of a Sort

 If possible, perform sort at the end (after deleting all
tuples and columns not needed in the result)

* The input in the sort algorithm is the output from the
previous operation (TT; ;(N,><IN,) in the case
considered)

* Apply m-way sort — merge algorithm (/og,,)

* Mind, it is not always possible to defer the sort till the
end of the query execution
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