
1

First Design Example

We are to design a device that tallies a sequence of inputs from the operator.
Inputs include pushbutton switches to clear (CLR) and tally (ADD) the
input from two toggle switches (SW0, SW1). For correct operation, the
toggle switches must be set before the ADD button is pushed. Each time
the ADD button is pushed the input is added to an accumulated SUM which
is displayed as a binary number in four lights.
The picture below illustrates what the TALLY box might look like. All

we are really concerned with, though, is the external logical view, shown to
the right.

SUM

12
0

1

IN
1

���
�

0

���
�

������������

CLR

ADD

���
�

2

SUM 4

TALLY
CLR*

ADD*

SW*

This description leaves several details unspecified. For example, it does
not specify what happens if the accumulated sum exceeds four bits, or
whether CLR takes precedence over ADD. Our implementation will have
to resolve these issues and perhaps others (whether we recognize them or
not!).
Let us reiterate some basic Design Principles:

• Separate design and implementation phases.

• In design

– Make an estimate of architecture, but do not prematurely com-
mit to representation details.

– Develop a control algorithm for the architecture you sketched.

– Refine the architecture in light of insights gained in control de-
velopment.

– If refinement degenerates to a design cycle, discard the design
and start over.

• In implementation

– Be ruthlessly systematic.

– Maintain the over-all design structure.

– Resist “tweaking” the design to achieve local implementation
trade-offs.

Copyright©c 2003 Steven D. Johnson Draft Material October 28, 2004

2

Architecture

We need a register to accumulate
and hold a 4-bit sum, a function to
add a 2-bit input to the content of
the register, and a means of clearing
the accumulator. Abstractly, these
needs give us the architecture shown
to the right. Our controller does
not need any status information from
this architecture—its algorithmic flow
is determined by the push buttons
only. Its control signals will deter-
mine what operation, clear, hold, or
add, is performed on the SUM.

ADDER

4

4

0
4

20

4

SUMS

REGISTERLD

1 0

TALLY

CNT

ZERO

OVFL

SW
2

The pushbuttons and switches are asynchronous, of course, but our
architecture sketch (and later our control diagram) refer to synchronous
inputs such as SW. Part of the work of the implementation is to synchronize
these signals, but suppose, for the moment that external inputs have been
synchronized.

Algorithm

Since the clock frequency is likely
to be vastly higher than the rate at
which the operator can push the but-
tons, we need to be sure that one
button-pushing action is interpreted
as a single add instuctions. Our ASM
has two states, one ready for a button
to be pushed and the other waiting for
a button to be released. In the event
that the CLR button is pushed, a com-
mand is issued to the architecture to
clear the SUM. If the device is ready
to perform an add an the ADD button
is pushed, the switches are added to
the accumulator, and control goes to
a state in which it is waiting for the
button to be released.

[0:3]

CLR

CNT

ADD

ADD
1

0

+ CNTSW

HOLD

0 CNT

RDY

1

1

0

1

0

At this point, one should stop to analyze pathelogical cases arising from
our algorithm, such as how it behaves when both buttons are pushed, and
so forth. Tracing the paths through the decision blocks, there do not appear

Copyright©c 2003 Steven D. Johnson Draft Material October 28, 2004

3

to be any pathelogical behaviors. In larger designs, isolating and resolving
anomalous behavior is difficult because one must reason about the impli-
cations of all possible input events in all possible orders.

Implementation

During the implementation stage, we fix data representations and choose
devices as we proceed. There are many opportunities for second-guessing
our choices, as is the always the case in design. Experience helps guide
our choices, but as we gain this experience, it is important to avoid getting
mired by details. Even in this small example there are numerous ways to
implement the behavior of the abstract architecture.

Control Implementation

The ASM has two states. One way to implement it is to have a single
bit, S to distinguishe RDY (S = 0, say and HLD. The truth table below
develops both the next-state function, S ′, and the command issued to the
architecture. Both these functions depend on S, CLR, and ADD.

S CLR ADD S′ ZERO TALLY command

0 0 0 0 RDY − 0 hold

RDY 0 0 1 1 HLD 1 1 add

0 1 X 0 RDY 0 1 clear

HLD 1 X 0 0 RDY − 0 hold

1 X 1 1 HLD − 0 hold

Copyright©c 2003 Steven D. Johnson Draft Material October 28, 2004

4

01 0

.CLR ADD

0

1

CLR,ADD
S 00 01 11 10

ZERO:

0

1

CLR,ADD
S 00 01 11 10

0 1

0 01 1

0 0

. .CLR ADD + S ADD

0 1 1 1

0 0 0 0

S ADD + S CLR. .

0

1

CLR,ADD
S 00 01 11 10

= (CLR + S) ADD.
= S (ADD + CLR).

S’: TALLY:

CLR

S’ S

ADD

TALLY

ZERO

Q

Q

DFF

D

Architecture Implementation

Gate Level Implementation.

The adder. We could use a 4-bit combinational adder, developed
earlier. The 2-bit SW input is expanded to 4-bits by adding two
constant-0 signals. If saving gates were critical, the adder could be
specialized in three ways:

– C0 is always 0, so

S0 = A0 ⊕B0 ⊕ 0 = A0 ⊕B0
C1 = A0B0 +A0 0 +B0 0 = A0B0

This combination is called an half adder.

– The upper two bits of the SW operand are 0s, so

S2 = A2 ⊕ 0⊕ C2 = A2 ⊕ C2
C3 = A2 0 +A2 C2 + 0C2 = A2 C2
S3 = A3 ⊕ 0⊕ C3 = A3 ⊕ C3
C4 = not used

The selector. In the architectural sketch, a mux is used to select
the next value for the register, a zero if the command is to clear the

Copyright©c 2003 Steven D. Johnson Draft Material October 28, 2004

5

counter, and the new sum from the adder otherwise. The mux symbol
in the schematic represents a bank of four muxes, one for each bit of
the sum.

Since one of the selected inputs is 0, the selection can be specialized
to

SUM
′

i
=M · 0 +M · Si =M · Si

So selection in this case can be implemented with an and gate.

The accumulator. The register containing SUM will capture its
input when a load command (LD) is asserted.

MSI Implementation. For the purpose of concreteness, refer to Table
21–1 in the textbook (p. 512), which lists some common MSI devices.

The adder. A 74LS181 4-bit ALU would also subsume the selector,
since it includes an operation to generate a 0000 output.

The selectors. A 74LS157 quad-2-input multiplexor packages four
multiplexors. As noted above, a 74LS00 quad-nand package would
also suffice; resulting in fewer gates but no fewer chips.

The accumulator. A 74LS175 4-bit D register packages four D flipflops.

FPGA Implementation. In most modern design environments low-
level optimization details are left to design automation facilities in the final
stages of design synthesis. The design engineer is dealing with logical ab-
stractions contained an a hierarchical library of design elements, including
conceptual building blocks, such as adder, multiplexor and register.

This is a mixed blessing. Most of the time, the synthesis tools do an
adequate job of minimization—usually better than a human would do man-
ually. Occasionally, however, they don’t; and when automation fails to
achieve sufficient performance goals, the designer must deduce what went
awry, often with very indirect knowledge of the synthesis process. The ”art”
of design becomes a process of discovering what modes of specification lead
to good outcomes.

Refinements

In the course of this example, considerations have been raised that have
been deferred.

Copyright©c 2003 Steven D. Johnson Draft Material October 28, 2004

6

Input Synchronization . The CLR and ADD pushbuttons should be
debounced (using an RS flip-flop) and synchronized using a D flip-flop.
The SW data switches do not need to be debounced because the protocol
requires that their positions be set prior to pushing the ADD button.

+

CLR* CLR

+

CLR* CLR

+

SW1*

+

SW2*

R

R

R

R

R

R

R

R

Q

R

S D

DFF

Q

Q

R

S D

DFF

Q

Exercises

1. Modify the design to stop accumulating values once SUM exceeds the
maximum value of 16. If the count overflows, SUM should be set to
1111 (15) and an overflow indicator should be lit.

2. Reduce the design to gate level and optimize the selectors.

3. Build an addition circuit that incorporates the clear mode and over-
flow condition.

Copyright©c 2003 Steven D. Johnson Draft Material October 28, 2004

