Designing
a Minicomputer

-,

You are ready to tackle a really substantial project to round out your study of
hardwired design. Nothing will sharpen your design s$kills more than wading
through the design of a complex project from start to finish. Thus far, you have
studied pieces of the design process; in the next three chapters we will help you
forge your knowledge into an integrated and workable design tool. What project
should we choose? Such an undertaking should be detailed yet elegant, large
yet not too large. Let’s design a computer!

Our aim is to design an entire operational computer system, taking no
shortcuts, leaving nothing out. Most computers, even the smallest microcomputers,
are highly complex structures—too complex to be a suitable teaching illustration
at the MSI and LSI level of design. Instead, we choose the first minicomputer,
the Digital Equipment Corporation PDP-8. ‘

The PDP-8 has had a successful history, More than 100,000 units have
been installed, many of which are still in use. The PDP-8 also has an extensive
library of software and is a good machine for illustrating device interfacing.

The great advantage of the PDP-8 for our purpose is that it has a simple
structure with only eight basic instructions. It exists in several models; each
executes the same basic set of instructions, but they differ in minor ways. We
will use the PDP-8I as the basis for our exercise. We will develop our design
from first principles and make no reference to the Digital Equipment Corporation’s
design. The result will be functionally equivalent to the PDP-81—for example,
it will run PDP-81 software—but we will use top-down design techniques. The

260

only detailed information we need about the PDP-8I is a description of the action
of each instruction. We shall call our design the LD20.1

The statement of the problem is brief: build a computer that will execute

the PDP-8I instruction set.

PDP-81 SPECIFICATIONS

The first step is the obvious one of studying the PDP-8I to see what we must
emulate. The major characteristics of the PDP-81 are:

(a)

(b)

(©

(d)

A 12-bit word size. This is quite small and will cause memory-addressing
limitations. If a memory word is used to hold an address, it can refer to
only 4096 (2'%) different locations. Therefore, the standard PDP-8 is limited
to 4096 words of addressable memory.

A single accumulator. Several instructions refer to an accumulator (AC),
used to store intermediate results for later manipulation. Having only one
accessible register forces a programmer to use care in saving and restoring
vital data in the AC, for example upon subroutine entry and exit. Many
computers have several registers, which can speed the execution of programs
but which expose the programmer to subtle bugs if the data in all registers
is not properly handled. In many applications the single AC is a blessing!
A 3-bit operation code. Each instruction occupies a 12-bit word, of which
3 bits are devoted to the operation code. This provides eight basic com-
mands—an adequate but hardly abundant number. Only 9 bits remain in
thé Instruction for such purposes as addressing memory, whereas the 4096-
word memory requires a full 12-bit address.

Paging. Addressing limitations in minicomputers and microcomputers have
forced computer architects to find a number of ingenious solutions. The
PDP-8’s method is based on memory pages of 128 (2) words. The 4096-
word address space is divided into 32 pages, and each memory-referencing
instruction has 7 bits to address a word within a page. The missing 5 bits
of the address are not a part of the instruction, but are derived implicitly
from the context. Without some trick of this sort there would be no way
to pack a 3-bit command apd an address into a 12-bit word. Maneuvers
such as this are common features of minicomputers. The paging mechanism
of the PDP-8 is perhaps the simplest technique and serves as a foundation
for studying more complicated schemes used in other computers.

Throughout thjs design exercise, we will use the octal numbering system

to specify particular values of the PDP-8’s instructions, addresses, and so on.

+ The LD20 design developed in this book is used in instructional laboratories for digital

design. The equipment to support this design and the LD30 microprogrammed version (developed
in Chapter 10) is produced by Logic Design, Inc. A laboratory manual for the LD20 and LD30 is
available. See Readings and Sources at the end of this chapter..

Chap. 7 Designing a Minicomputer 261

Any such numbers not in octal will have an explicitly designated base. Thus
305 is 305 octal, 1011, is 1011 binary, and 42,, is 42 decimal.

'PDP-8 Memory Addressing

In many memory addressing schemes for small instructions, the location of the
current instruction is used to specify part of the operand address. For example,
assume a program with five instructions stored sequentially, starting at location
300. Call these instructions CM0 (command 0) through CM4 (command 4). A
memory map of this program would be:

Location Contents
300 CMO
301 CM1
302 CM2
303 CM3
304 CM4

If instruction CM3 is being executed, we know that it is Jocated at address 303,
since that is where we placed it. Instruction CM3 can employ d subset of the
12 bits in its word to reference data located close to location 303. In the
PDP-8, ‘‘close to’’ means in the same page. .

The PDP-8 splits 4096 words of memory into 32 pages of 128 words each,
as shown in Fig. 7-1. Instruction CM3 is in page 1; 7 bits are sufficient for that
instruction to access any word in that page.

Page 0 0-177
Page 1 200 - 377
Page 2 400 - 577 All addresses are octal.
] Each page contains
II 27 = 128, = 2005 words
|
[}
|
|
|
[
|
Figure 7-1 Page structure of the
Page 31, 7600 - 7777 memory of the PDP-8.

We now have a mechanism such that an instruction needs only 7 bits to
access a memory cell in one particular page. Let us call these 7 bits the page
offset, and let the page offset occupy the rightmost 7 bits of a PDP-8 instruction:

Op code |Uncommitted| Page offset
3 bits 2 bits 7 bits

262 The Art of Digital Design Part il

Suppose location 301 contains the 12 bits 001 XY1 000 101,, (for the moment
we will ignore the 2 bits X and Y). The operation code is 001,, which means
an addition of the AC and the contents of a memory location. Which location?
The 7 page-offset bits are 1 000 101, = 105;. The instruction is to add the
contents of location 105 in this page (the page containing the add instruction) to
the accumulator. We know that the instruction is at location 301, and since the
instruction is in page 1, the page offset is referring to page 1. Thus we will get
the contents of word 105 in page 1 and add it to the AC.

What if instructions in different pages require the same data? It would be
nice if some common page could be accessed by instructions in any page. In
the PDP-8, page 0 has this function.. We have two precious unused bits in the
instruction, and we need one of them to tell if we want word 105 in the current
page (page 1 in our example) or word 105 in the common page (page 0). In the
PDP-8, the Y bit is used for this page selection; we call it the page bit.

If the page bit is I, the page address of the current instruction is concatenated
with the 7-bit offset in the instruction to form a full 12-bit address, which is
sufficient to identify any word of the 4096-word memory. If the page bit is 0,
the reference will be to a word in page 0 of the memory.

If we execute an instruction at location 301 that contains 001 011 000
101,, we will add the contents of location 105 in page 1 to the AC. Location
105 in page 1 is memory location 305

000 01 1 000 101, = 305
I l

Page Page
. address offset

If location 301.contains 001 001 000 101,, the instruction would mean to.add the

contents of location 105 in page 0 to the AC. Location 105 in page 0 is memory
location 105.

Indirect addressing. We have shown how the page bit and the page offset
combine to yield an address either in page 0 or in the current instruction page.
What happens if a command in page 2 needs to access a location in page 7?
We must use all 12 bits of a word as address bits. We can do this if the word
accessed by an instruction is treated not as an operand but as the address of
an operand. This extra step is called indirect addressing. The PDP-8 uses the
remaining instruction bit X as the indirect bit to specify indirect addressing. The
complete format of a memory referencing instruction is

Op code Indirect Page | Page offset
3 bits bit bit 7 bits

In the prévious examples, the contents of locations 305 or 105 (for page
bits 1 or 0) were treated as 12-bit data words. If the indirect bit is on, these

Chap. 7 Designing a Minicomputer 263

contents are treated as 12-bit addresses of data. We require one extra memory
cycle to access this final indirectly addressed data location.

Indirect addressing is a powerful concept since it provides a way to specify
arbitrary 12-bit addresses. Into some memory word IND that is close to our
instruction or in page 0, we load the address of the final location that we wish
to access. We can then access the location by indirectly addressing it through
IND.

It is useful to have a shorthand for the final memory location referenced
in an instruction after all applicable paging and indirect addressing are invoked.
We call this final location the effective address, EA. The contents of location
EA 1s called the contents of the effective address, CA. (CA is sometimes called
the effective operand.) Using EFA and CA, we can compactly describe the memory
references of any PDP-8 instruction.

A

Examples of memory addressing. Here are some examples of referencing
memory using PDP-8 instructions. The addresses will have 12 bits, since the
PDP-8 has 4096 words of memory. We refer to the contents of an addressed
memory location by enclosing the address in parentheses: If location 0301 contains
0305, then (0301) = 0305. Note that (EA) = CA. '

Now assume that the following memory locations have been loaded with
the data shown:

(0301) = 1305 (0305) = 1234
(0302) = 1105 (0105) = 4321
(0303) = 1705 (1234) = 5567
(0304) = 1505 (4321) = 7765

(a) What are the EA and the CA for the instruction located at 03017

Command = 001, = TAD (Add) ;
1305 = 001 01 1000 101,
Indirect bit = 0
Page bit = 1
Page offset = 105

EA = 000 01 1 000 101, = 0305
| |
Page Page
address offset
CA = (0305) = 1234

This instruction would add the quantity 1234 to the contents of the AC.
(b) What are the EA and the CA for the instruction located at 03027

264 The Art of Digital Design Part I

Command = 001, = TAD
1105 = 001 00 1_000 101,
Indirect bit = 0
Page bit =0
Page offset = 105
EA = 0105

CA = (0105) = 4321
This instruction would add the quantity 4321 to the contents of the AC.
(c) What are the EA and the CA for the instruction located at 0303?
Command = 001, = TAD
1705 = 001 11 1 000 101,
Indirect bit = l———-"
Page bit =1
Page offset = 105
EA = (0305) = 1234
CA = (1234) = 5567
This instruction would add the quantity 5567 to the contents of the AC.
(d) What are the EA and the CA for the instruction located at 03047
Command = 001, = TAD
1505 = 001 10 1 _000 101,

Indirect bit = 1
Page bit =0
Page offset = 105
EA = (0105) = 4321
CA = (4321) = 7765

This instruction would add the quantity 7765 to the contents of the AC.

Auto indexing. The PDP-8 has a feature called auto indexing that provides
some flexibility in addressing. Most large computers have index registers to
facilitate access to arrays of data. Unfortunately, specifying an index register
takes 1 or more bits of the instruction and we have no bits left. The PDP-8’s
auto indexing is a primitive way to index without using bits in the instruction.
An auto index register is a word in the memory that will be automatically
incremented every time it is used as the source of an indirect address. The word
is incremented before it is used as an address. Repeated use of the same auto
index register will sequence the effective address FA throughout the full address
space of the memory. There are 8 auto index registers in the PDP-8’s main
memory, locations 10g through 17;. When not performing auto indexing, these
locatians behave like normal memory words.

Here are some examples of auto indexing. Assume that the following
locations have the contents shown:

Chap. 7 Designing a Minicomputer - 265

(0013) = 4102
(4102) = 1111
(4103) = 2000

(a) Instruction: 1013 001 00 O 001 Oll,

Command = 001, = TAD
Indirect bit = 0
Page bit =0
EA = 0013
CA = (0013) = 4102 v
Although location 0013 is the address, there is no auto indexing because
the indirect bit is 0. This instruction adds the quantity 4102 to the contents
of the AC.
(b) Instruction: 1413

001 10 0 001 Olt,

Command = 001, = TAD
Indirect bit = 1|
Page bit =0

The initial address is 0013. This is an auto index location used as an indirect .
address. The auto indexing feature causes

(0013) (+) 1 —{0013), or
4102 (+) 1 — (0013)

Then

EA = (0013) = 4103
CA = (4103) = 2000

The effect of executing this instruction is to increment the contents of location
0013 by 1, and to add the quantity 2000 to the contents of the AC.

PDP-8I Instructions

Its instruction set characterizes a computer, and therefore we must carefully |
study the PDP-8I's instructions. The effective address EA and contents of the :
effective address CA notations allow a compact description of the memory- i
referencing instructions. '

AND (Twelve-bit logical AND). Operation code 000, = 0y.
AC+*CA — AC

This is a bit-by-bit AND of the AC with the effective address contents. Fori
example,

:
t
266 The Art of Digital Design Partll !
}

AC =001 101 110 000,
CA = 100111100100,
ACTCA = 000 100 100 00,

The value uf A=A replaces the ald contents of the AC.

TAD {Two's-complement add). Operation cade 00, = ..
AC[*}CA = AT

Thie addition is performed in the teo’'s-complemeni mode; thal is, the instnsction
smploes that the numbers are 12-bdi signed guaniities represented in the fwo's-
complement notalion. IF an arithmelic overflow occurs, the CPL toggles (Com-
plements) i special fAag colled dhe ok i (LINET)

ISZ (Increment and skip 0. Operation code 010: = 2,

CA{+) | — (EA); than, (FCA (+1 1 = 0, skipihe next instruetion; olherwise
execite the nekl instniction,

This instmiction is useful m cotirolling loop execulion,
DCA [Deposit and clear AC). Opsration code 011; = 3.
AL = (EAY; then 1} = AL

The contents of dhe AC goes inlo the specificd memory location, then the AC
is sct 10 0

JMP (Jumgl. Operation code 100, = 5.
Tump to kcation siath address EA for the next instruction.
JMS (Jump to subroutine). Operation code 10 = 45,

Stare the address of the word folksweg the IMS snstrucibon (6., the rezurn
krcation) in the memory word with address £A. Then jump to thelocation
with address E4 (+) 1 for the next instruction.

The return location is the word after the JMS instruciion. This instreclion stores
the retuen address in the first sword of the subroutine amd then jumps 10 the
secomdd word, which musi contain the slarting instruciion for the subroutine.
The normal eniry 1o subrouling X is thus with 2 JMS X, which saves the return
address i location X. The normal cxit from the subroaitifie is with a JMP =X
{indirect jump through lecation X, :

OF (Operate). Operation code [11; = 7,. This is by faf the most compley
command in the PDP-B. 11 does not reference memory, so the address field bils

Chap. 7 Designing a Meicomputer FLTy

ary available (or other purpeses. The Opemte instruction permits the following
basic acieens:

o0 i Clear accumulator: 0= AL
et | Chear link hit: i — LIWNK
Ca Complement accumulalor: Ar = AT
s Complement link bit: ITHE — LINK

Th ¢ Increment accumulator: AL () | = AL
pilotate the concaterated accumulator and link bit right or lefi, T or 2 bit
LE® T positions
not DR cansole swiiches wilth AC: S8 + AC = AT
Skip on various conditsons of the accumulator or link bil.
by «Halt the compuater,

- Ench of these aperalions is controlled by [oF mone bils in the address field
of the instruction. These are somelimes callied microcoded inxtrucrions or mi-
credngtrwcitions. The programmed ‘may invoke combinations of these micrin-
structions within one Operale instruction. Thers is a huge number of possible
combinatiors; sboul 20 of these are useful o the programmer, These combinations
of micrainstructions gase the ninch of baving anhe sioht hocic insiructions in the
PIP-R

The opzration cade 111, ocoupies bils O through 2, as dsual. lnsiraciioes
Bits 3 through 1] Bave individual functions, The Operate insiruclion on the PO
Bl is split into two groups, group | 0G1) and group 2 (G2). Bin 3 specifies the
group: in group b Bt 3 = 0 in growp 2. bit 3 = |

The format for group | s

3 8 1 1 4 5 4 7 OB B i 1§
" T
clelo]e|rn® i
el le e mla e |Roel
alLla|LfRIL| ™=l
N |
Cpiiele Cooap
1
The meaning of the microcode bits in Gl ois
(iE M M HMpme
4 CLy Clhear accsmiulanor
S CLL Clear Imk
L CMLA Complernent acsumaslator
T CML Camplkement bk
] REAR Botmte aecumsision oed ik rght
L] RAL Rotaie sccumulaior and ling lef
[[4] - 0 = |- ptibzn; 1 o= 2-hil rotaiion
1 Iac Inzrement sccumalaor

268) The Art of Digital Design FPart ¥

The format for group 2 is

0 1 2 3 4 5 6 7 8 9 10 11
C|S|IS|s . Ol H
tfofe] oMz |N] Sk (gl 1y
Atalalol e igly
_—
Op code Group
2
The meaning of the microcode bits in G2 is
Bit Mnemonic Name
4 CLA Clear accumulator
5 SMA Skip on minus accumutator
6 SZA Skip on zero accumulator
7 SNL Skip on nonzero link
8 — {specifies sense of skips; see discussion)
9 OSR OR switch register into accumulator
10 HLT Halt the computer

(In group 2 micro-operations, bit 11 is 0. On the PDP-8I, the condition of bit
11 is irrelevant, but some other models of the PDP-8 computer have another set
of microinstructions, group 3, identified by bits 3 and 11, both of which are set
to 1.) ’

To find the exact result of combining microinstructions, we must define
the sequence in which the operatiofs of each group occur. The PDP-8 describes
the sequence in terms of priorities. There are four priority levels, | through 4:
priority 1 operations occur before priority 2, and so on. The priority sequences
of the micro-operations of Gl and G2 are

Priority Group | Group 2
1 CLA CLL Skips
2 CMA CML CLA
3 IAC OSR HLT
4 Rotates

The group 2 *‘skip’’ microinstructions require further explanation. There
are three conditions for skipping: SMA, SZA, and SNL. Bit 8 determines the
skip mode. The operations are as follows: .

If bit 8 is 0: a skip occurs if any of the chosen conditions is satisfied;
otherwise, no skip occurs.

If bit-8 is 1: no skip occurs if any of the chosen conditions is satisfied;
otherwise, a skip occurs. '

Chap. 7 Designing a Minicomputer : 269

0T (input-output transfer). The operation code is 110, = 6;. The PDP
8 has a primitive but adequate facility for the input and output of data. We wil
discuss the 10T instruction more thoroughly later; but now we will note how
data enters and leaves the computer. Qutgoing data (from the PDP-8 to the
external world) comes from the AC. Incoming data reaches the AC by being
ORed with the existing contents of the AC. There is a programmable facility
for clearing the AC prior to accepting incoming data. Thus the basic input
operations are

0 — AC (optional)
Input.Data +AC — AC

The IOT instruction also permits the programmer to enable and disable the
PDP-8’s interrupt system. These 10T subcommands are ION (Interrupt System
On) and IOF (Interrupt System Off), and have instruction bit patterns 6001, and
60024, respectively. The presence of interrupt commands alerts us to the need
to investigate the interrupt mechanism.

Interrupts. The PDP-8 specification requires that the machine be able to
sense the presence of an external interrupt request. This request originates in
some peripheral device and means that the device wishes to report an event of
interest to the computer program. Any number of devices can request interrupt
processing through this one external interrupt request line. When the PDP-8's
interrupt system is activated, the computer monitors the interrupt request signal
to see if any device needs servicing. If so, then at an appropriate time in the
normal instruction processing cycle, the PDP-8 will force an automatic subroutine
jump (IMS) to a fixed memory location (cell 0000). It is the programmer's
responsibility to see that a valid subprogram for processing interrupts begins at
focation 0000. This subroutine is responsible for reading data from the peripheral
device, writing data, or perhaps placing control information into the device. The
characteristics of the device generating the interrupt determine what the interrupt
subprogram must do. Therefore, the interrupt subprogram must determine which
device is responsible for the interrupt and then perform actions tailored to that
device. After servicing the interrupt, the subprogram will make a normal subroutine
return through cell 0000 and processing of regular instructions will resume.

Interrupt requests originate from external devices running at their dwn pace,
and may interrupt the program at any time. This is both a blessing and a curse
to the programmer. Interrupt requests can occur whenever a peripheral device
decides it needs service from the main computer. This is a potent programming
tool, since the computer program need not waste time continually checking its
peripheral devices to see if one needs service.

Interrupts are powerful; they are also tricky. The difficulty arises because
interrupt requests originate from external devices and are therefore not reproducible.
An interrupt may occur when the resident computer program is not prepared to
handle it. For instance, suppose that the programmer has not established an
interrupt service routine beginning at memory location 0000. Then the program

270 - The Art of Digital Design Part I}

will not run correctly if the computer recognizes an interrupt and jumps to
location 0000. Even if the interrupt service program is present, it may not
properly treat all the interrupt requests that may arise. These problems are
difficult to diagnose, since the debugger of the program cannot reproduce the
exact sequence of instructions that led to the difficulty. Interrupt programming
requires much more foresight and care than conventional programming.

To allow more control over this difficult programming task, computers with
interrupts always allow the programmer to enable (turn on) and disable (turn
off) the computer’s interrupt detection apparatus. The programmer may select
those times when interrupt requests may result in the interruption of the program.
Some computers permit the handling of several types of interrupts, each type
having its own interrupt jump location. We will not pursue this subject, because
our focus is on the PDP-8’s interrupt capabilities.

The PDP-8 programmer may enable or disable the recognition of interrupts
by using the ION (Interrupt System On) and IOF (Interrupt System Off) sub-
commands of the IOT instruction. The PDP-8's hardware will automatically
disable the interrupt system whenever an interrupt causes a jump to location
0000. This action is needed to give the programmer’s interrupt service routine
enough time to react to one interrupt without the danger of another interrupt
occurring in the middle of the processing of the first interrupt. It is the programmer’s
responsibility to enable the interrupt system again at the proper time, to permit
the detection of further interrupts. This gives rise to a subtle problem. The
interrupt subroutine will normally leave the interrupt system disabled until it is
time to return to the main (interrupted) program. At this time the interrupt
subprogram must enable the interrupt system and return. The last two instructions
of the subprogram are:

IR

ION (Turn on interrupt system)
IMP %0 (Indirect jump to point of interruption)

We must make sure that we can execute the return jump to get back to the main
program. Consider what would happen if an interrupt request is pending at the
time the ION command is executed. The ION would reenable the interrupt
system and the computer would immediately jump again to location 0000 without
executing the jump instruction after the ION. The interrupt-forced JMS 0 causes
cell 0000 to receive the address of the point of interruption—the address following
the ION in this example. This act destroys the old return address in location
0000 which the unexecuted JMP 0 instruction wanted to use. The PDP-8’s
solution to this dilemma is to inhibit the recognition of interrupt requests for
one instruction following an ION command, thus allowing the program the time
to execute the crucial JMP %0 to return to the interrupted program before the
computer recognizes any additional interrupt requests.

Interrupts are a complex feature of computers, and they place a heavy

Chap. 7 Designing a Minicomputer 271

