
Well-Definedness and Semantic Type-Checking for

the Nested Relational Calculus

Jan Van den Bussche, Dirk Van Gucht, and Stijn Vansummeren∗

January 25, 2006

Abstract

The well-definedness problem for a programming language consists
of checking, given an expression and an input type, whether the se-
mantics of the expression is defined for all inputs adhering to the in-
put type. A related problem is the semantic type-checking problem
which consists of checking, given an expression, an input type, and an
output type whether the expression always returns outputs adhering
to the output type on inputs adhering to the input type. Both prob-
lems are undecidable for general-purpose programming languages. In
this paper we study these problems for the Nested Relational Calcu-
lus, a specific-purpose database query language. We also investigate
how these problems behave in the presence of programming language
features such as singleton coercion and type tests.

1 Introduction

The operations of a general-purpose programming language such as C or
Java are only defined on certain kinds of inputs. For example, if a is an array,
then the array indexation a[i] is only defined if i lies within the boundaries
of the array. If, during the execution of a program, an operation is supplied
with the wrong kind of input, then the output of the program is undefined.
Indeed, the program may exit with a runtime error, or worse yet, it may
compute the wrong output.

To detect such programming errors as early as possible, it is hence nat-
ural to ask whether we can solve the well-definedness problem: given an
expression and an input type, decide whether the semantics of the expres-
sion is defined for all inputs adhering to the input type. Unfortunately, this
problem is undecidable for any computationally complete programming lan-
guage, by Rice’s Theorem. Most programming languages therefore provide
a static type system to detect programming errors [17, 18]. These systems

∗Research Assistant of the Fund for Scientific Research - Flanders.

1

ensure “type safety” in the sense that every expression which passes the type
system’s tests is guaranteed to be well-defined. Due to the undecidability of
the well-definedness problem, these systems are necessarily incomplete, i.e.,
there are expressions which are well-defined, but do not type-check. Such
expressions are problematic from a programmer’s point of view, as he must
rewrite his code in order to get it to type-check. As such, a major quest
in the theory of programming languages consists of finding static type sys-
tems for which the set of well-defined but ill-typed expressions is as small
as possible.

Although the Holy Grail in this quest (i.e., a type system which is both
sound and complete) can never be found for general-purpose programming
languages, this does not mean it cannot be found for smaller, specific-
purpose programming languages. The most prominent examples of the latter
are database query languages such as SQL [15], OQL [8], and XQuery [5].
Expressions in all these languages can be undefined. For example, consider
the following OQL expression:

select author: element(b.authors), title: b.title
from books b
where b.pub_year > 2000

This expression returns, for each book published after the year 2000, the
book’s author and title. The subexpression element(b.authors) checks
that the set of b’s authors is a singleton, and if so, extracts this single
author. If the book is written by more than one author however, the result
of the expression is undefined.

As query languages do not have full computational power, Rice’s theorem
does not apply and it is hence worthwhile to investigate if we can’t decide
the well-definedness problem for them. If so, then we obtain in essence a
type system which is both sound and complete. In this paper we study
the well-definedness problem for the Nested Relational Calculus (NRC for
short), which is well-known from the complex object data model [1, 7, 23].
The NRC is a conservative extension of the relational algebra [22] (which
serves as the data processing core of SQL) and can itself be viewed as a
data processing core of OQL. Furthermore, the NRC inspired the design
of various semi-structured languages such as UnQL [6], StruQL [11], and
Quilt [9], on which XQuery is based. As such, the study of well-definedness
for the NRC serves as a starting point for the study of well-definedness in
SQL, OQL, and XQuery.

Specifically, we study the well-definedness problem for the NRC in the
standard, set-based, complex object data model. We obtain that the prob-
lem is undecidable for the NRC in general, but is decidable for the positive-
existential fragment of the NRC (PENRC for short). Next, we study well-
definedness for the PENRC in the presence of the singleton coercion operator

2

extract. This operator, like OQL’s element operator, extracts v from a sin-
gleton set {v} and is undefined on non-singleton inputs. Alas, this operator
causes the well-definedness problem to become undecidable again. The core
difficulty here is the fact that extract({e1, e2}) is defined if, and only if, ex-
pressions e1 and e2 return the same result on every input. As such, in order
to solve the well-definedness problem one also needs to solve the equivalence
problem. We show that the equivalence problem for the PENRC is undecid-
able. Finally, we study the well-definedness problem for the PENRC in the
presence of type tests. Such tests allow the inspection of the type of a value
at runtime and are present for example in XQuery. Unfortunately, type test
also cause the problem to become undecidable again. Fortunately however,
well-definedness remains decidable if we only allow a limited form of type
tests, which we call kind tests.

Certain features of OQL and XQuery are not covered in this paper. For
example, OQL operates on bags and lists in addition to sets, while XQuery
operates on lists. Both languages have object identity and the ability to
create new objects. We study the well-definedness problem for these features
in a companion paper [20, 21].

A useful side-effect of having a static type-system is that it computes
an output type for every well-typed expression. All outputs generated by
the expression are guaranteed to belong to this type. Such an output type
is useful in a “producer-consumer” setting where a producer uses a query
to generate data, which is processed by a consumer. In order to ensure
good operation, the producer is expected to only produce data adhering to a
certain type. This can be statically checked by investigating the output type
of the query expression. The static type system only computes output types
for well-typed expressions however. Moreover, the output type computed by
the type system is often “too big” in the sense that it contains values which
will never be output. It is therefore interesting to see if we can’t solve the
semantic type-checking problem for the query languages mentioned above.
This problem consists of checking, given an expression, an input type and
an output type, whether the expression always returns outputs adhering
to the output type on inputs in the input type. We study this problem
for the NRC and the complex object type system, where we obtain the
same (un)decidability results as for well-definedness. The semantic type-
checking problem has already been studied extensively in XML-related query
languages [2, 3, 13, 14, 16, 19]. In particular, our setting closely resembles
that of Alon et al. [2, 3] who, like us, study the problem in the presence of
data values. In particular they have shown that (un)decidability depends on
the expressiveness of both the query language and the type system. While
the query language of Alon et al. can simulate the NRC, one needs a feature
called specialization in order to encode the complex object type system in
the type system of Alon et al. In the presence of this feature, they have
shown semantic type-checking for their type system to be undecidable, even

3

in the positive-existential case. In contrast, we will see that semantic type-
checking for the PENRC in the complex object type system is decidable.

Organization This paper is further organized as follows. In Section 2
we introduce the nested relational calculus data model and query language.
We introduce the well-definedness problem in Section 3, where we also show
that this problem is undecidable for the NRC in general, but becomes de-
cidable for the positive-existential fragment of the NRC. We study the well-
definedness problem in the presence of singleton coercion and type tests
in Section 4 respectively Section 5. We study the semantic type-checking
problem in Section 6 and conclude in Section 7.

2 Nested Relational Calculus

Data model We assume given a recursively enumerable setA = {a, b, . . . }
of atoms, which in practice will contain the usual data values such as integers,
strings, and so on. A value is either an atom, a pair of values, or a finite set
of values. For example, {a, (b, c), (a, {a, b})} is a value. We will range over
values by u, v, and w and over finite sets of values by U, V, and W .

Syntax We also assume given a set X = {x, y, . . . } of variables. The
Nested Relational Calculus (NRC) is the set of all expressions generated by
the following grammar:

e ::= x

| (e, e) | π1(e) | π2(e)

| ∅ | {e} | e ∪ e |
⋃
e | {e | x ∈ e}

| e = e ? e : e | e = ∅ ? e : e

Here, e ranges over expressions and x ranges over variables. We view ex-
pressions as abstract syntax trees and omit parentheses. The set FV (e) of
free variables of an expression e is defined as usual. That is, FV (x) := {x},
FV (∅) := ∅, FV ({e2 | x ∈ e1}) := FV (e1) ∪ (FV (e2) \ {x}), and FV (e) is
the union of the free variables of e’s immediate subexpressions otherwise.

Semantics A context σ is a function from a finite set of variables dom(σ)
to values. If dom(σ) is a superset of FV (e), then we say that σ is a context
on e. We denote by x : v, σ the context σ′ with domain dom(σ) ∪ {x} such
that σ′(x) = v and σ′(y) = σ(y) for y 6= x.

The semantics of NRC expressions is described by means of the evalua-
tion relation, as defined in Figure 1. Here, we write σ |= e ⇒ v to denote
the fact that e evaluates to value v on context σ on e. It is easy to see that
the evaluation relation is functional: an expression evaluates to at most one

4

Variables

σ |= x⇒ σ(x)

Pair operations

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2

σ |= (e1, e2) ⇒ (v1, v2)
σ |= e⇒ (v1, v2)
σ |= π1(e) ⇒ v1

σ |= e⇒ (v1, v2)
σ |= π2(e) ⇒ v2

Set operations

σ |= ∅ ⇒ ∅
σ |= e⇒ v

σ |= {e} ⇒ {v}
σ |= e1 ⇒ V1 σ |= e2 ⇒ V2

σ |= e1 ∪ e2 ⇒ V1 ∪ V2

σ |= e⇒ {V1, . . . , Vn}
σ |=

⋃
e⇒

⋃
{V1, . . . , Vn}

σ |= e1 ⇒ V ∀v ∈ V : (x : v, σ) |= e2 ⇒ wv

σ |= {e2 | x ∈ e1} ⇒ {wv | v ∈ V }

Conditional tests

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e3 ⇒ v a = b

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ a σ |= e2 ⇒ b
σ |= e4 ⇒ v a 6= b

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ V σ |= e2 ⇒ v V = ∅
σ |= e1 = ∅ ? e2 : e3 ⇒ v

σ |= e1 ⇒ V σ |= e3 ⇒ v V 6= ∅
σ |= e1 = ∅ ? e2 : e3 ⇒ v

Figure 1: The evaluation relation for NRC expressions.

value on a given context. The evaluation relation is not total however. For
example, if σ(x) is an atom then π1(x) does not evaluate to any value on σ,
since π1 is only defined on pairs. Likewise, we can only take the union of
sets, flatten a set of sets, iterate over sets, test equality on atoms, and test
emptiness of sets. An expression e can hence be viewed as a partial function
from contexts on e to values. We will write e(σ) for the unique value v for
which σ |= e⇒ v. If no such value exists, then we say that e(σ) is undefined.

We note that the semantics of an expression only depends on its free
variables: if two contexts σ and σ′ on e are equal on FV (e), then σ |= e⇒ v
if, and only if, σ′ |= e⇒ v.

5

Types The free variables of an expression are usually meant to hold only
values of a specific form, which can be specified by means of a type assign-
ment. A type is a term generated by the following grammar:

τ ::= Atom | Pair(τ, τ) | SetOf(τ) | τ ∪ τ.

A type τ denotes a set of values JτK:

• JAtomK := A,

• JPair(τ1, τ2)K := Jτ1K× Jτ2K,

• JSetOf(τ)K is the set of all finite sets over JτK, and,

• Jτ1 ∪ τ2K := Jτ1K ∪ Jτ2K.

We will abuse notation and identify τ with JτK. A type assignment Γ is a
function from a finite set of variables dom(Γ) to types. A type assignment
denotes the set of contexts σ for which dom(σ) = dom(Γ) and σ(x) ∈ Γ(x),
for every x ∈ dom(σ). Again, we will abuse notation and identify a type
assignment with its denotation. Finally, if dom(Γ) is a superset of FV (e),
then we say that Γ is a type assignment on e.

Example 1. Let friends and John be two variables. Suppose that the value
of friends is a set of friends, as a set of pairs of atoms. Suppose also that
the value of John is a name (an atom). The following expression computes
the set of all of John’s friends:⋃

{π1(x) = John ? {π2(x)} : ∅ | x ∈ friends}.

The set of intended context inputs to this expression is described by the
type assignment Γ on e for which Γ(friends) = SetOf(Pair(Atom,Atom))
and Γ(John) = Atom.

3 Well-definedness

As we have already noted in the previous section, e(σ) is not necessarily
defined (i.e., e does not necessarily evaluate to a value on σ). This leads us
to the following central notion:

Definition 2. Let e be an expression and let Γ be a type assignment on
e. If e(σ) is defined for every context σ ∈ Γ, then e is well-defined under
Γ. The well-definedness problem consists of checking, given an expression e
and a type assignment Γ on e, whether e is well-defined under Γ.

Since an actual implementation of the NRC will produce a runtime er-
ror on those contexts σ for which e(σ) is undefined, it is worthwhile to ask
whether we can let a computer solve the well-definedness problem. Unfor-
tunately, we cannot:

6

Theorem 3. The well-definedness problem for the NRC is undecidable.

Proof. It is well-known that the (finite) satisfiability problem for the rela-
tional algebra is undecidable [1]. That problem consists of checking, given a
relational algebra expression φ over a relational schema S, whether φ returns
a non-empty result on some database instance over S. It is easy to see that
a database instance can be encoded as a context. For example, consider the
database instance D where relation names r and s are assigned the following
respective relations:

A B C

a1 b1 c1
a2 b1 c2

C D

c1 a1

c2 a2

Clearly, D can then be encoded as the context σ where

σ(r) = {(a1, (b1, c1)), (a2, (b1, c2))}
σ(s) = {(c1, a1), (c2, a2)}.

It is well-known [7, 23] that for every φ and S there exists and expression e
and a type assignment Γ such that

1. e is well-defined under Γ,

2. the contexts in Γ are exactly the encodings of database instances over
S, and

3. if D is a database instance over S and σ is an encoding of D, then
e(σ) is an encoding of φ(D).

The fact that e is well-defined under Γ stems from the fact that relational
algebra expressions are always well-defined with regard to their database
schema. It is clear that φ is satisfiable if, and only if, e is satisfiable on a
context in Γ. Since the expression {π1(∅) | x ∈ e} is not well-defined under
Γ if, and only if e is satisfiable, we have a reduction from satisfiability to
well-definedness. Hence, well-definedness is undecidable.

Note that satisfiability for the positive-existential fragment of the re-
lational algebra (i.e., the relational algebra without difference) is trivially
decidable. Actually, every relational algebra expression (with equality pred-
icates only) in this fragment is satisfiable. In order to obtain a fragment of
the NRC for which well-definedness is decidable, it is hence worthwhile to
investigate which features of the NRC allow the simulation of a difference
operation. Assume that R and S are sets of atoms. The following expression
then computes the difference of R and S:⋃ {⋃

{x = y ? {x} : ∅ | y ∈ S} = ∅ ? {x} : ∅
∣∣ x ∈ R}

.

7

The inner comprehension returns {x} if x ∈ S and returns ∅ otherwise. The
outer conditional test compares this result with ∅ to filter out those x in
S. Since the ability to test set-emptiness is hence too powerful a feature
with regard to well-definedness checking, we will restrict ourselves in what
follows to expressions in which the emptiness test does not occur.

3.1 Positive-Existential Nested Relational Calculus

The Positive-Existential Nested Relational Calculus is the NRC without
emptiness test expression. Before investigating the well-definedness prob-
lem in the context of the PENRC, we should verify that we cannot simulate
the relational algebra difference operator by the remaining expressions. Oth-
erwise, we will still be able to simulate the full relational algebra, and the
well-definedness problem will remain undecidable. We therefore introduce
the containment relation v on values as follows [4]:

av a
vv v′ wvw′

(v, w)v(v′, w′)
for all vi there exists wj such that vivwj

{v1, . . . , vn}v{w1, . . . , wm}

Note that v is only a pre-order, not a partial order. Indeed, v fails to
be anti-symmetric: {{a, b}}v{{a}, {a, b}} and {{a}, {a, b}}v{{a, b}}, but
{{a, b}} 6= {{a}, {a, b}}.

The containment relation relation is extended component-wise to con-
texts: if σ and σ′ are two contexts with the same domain, then σvσ′ if
σ(x)vσ′(x) for every x ∈ dom(σ).

Lemma 4 (Monotonicity). Let e be a PENRC expression and let σ and
σ′ be contexts on e such that σvσ′. If e(σ) and e(σ′) are defined, then
e(σ)v e(σ′). If e(σ) is undefined, then so is e(σ′).

The proof is by a straightforward induction on e. It is easy to see that
the difference operator is a non-monotone operation. Indeed, let R = {a}
and S = ∅, then R − S = {a}. However, if we extend S to S′ = {a} then
R − S′ = ∅, which does not contain {a} although RvR and SvS′. It
follows that difference is not expressible in the PENRC.

We will show that the well-definedness problem for the PENRC is de-
cidable. The key to this decidability is that the PENRC has a small model
property for undefinedness. Let us introduce this property by an example.

Example 5. Let e be the expression

e = {{z = y ? π1(z) : y | y ∈ x} | x ∈ R},

and let the type assignment Γ on e be defined by:

Γ(R) = SetOf(SetOf(Atom))
Γ(z) = Atom .

8

Let the context σ ∈ Γ be defined by σ(R) = {{a, b}, {c}, {d, a, b}}} and
σ(z) = d. Since there is a set in σ(R) which contains σ(z), we will need
to evaluate π1 on σ(z) at some point, which is undefined (as σ(z) is an
atom). Hence, e(σ) is undefined. Note that we do not need all elements in
σ(R) to reach the state where e(σ) becomes undefined. Indeed, e(σ′) is also
undefined if σ′(R) = {{d}} and σ′(z) = d . Note that every set occurring in
σ′ has cardinality at most one and that σ′ ∈ Γ.

We will show in Section 3.2 that we can generalize this example as fol-
lows. Here, we say that a value v has width at most k if every set occurring
in v has cardinality at most k. Likewise, a context σ has width at most k if
σ(x) has width at most k, for every x ∈ dom(σ).

Proposition 6 (Small model for undefinedness). Let e be a PENRC
expression and let Γ be a type assignment on e such that e is not well-defined
under Γ. Then there exists a natural number k, computable from e, and a
context σ′ ∈ Γ of width at most k such that e(σ′) is also undefined.

Before showing how this property allows us to solve the well-definedness
problem, a definition is in order.

Genericity Let ρ be a permutation of A. We extend ρ to values in the
canonical way:

ρ((v, w)) := (ρ(v), ρ(w))
ρ(V) := {ρ(v) | v ∈ V }

We also extend ρ component-wise to contexts: ρ(σ)(x) := ρ(σ(x)). Two
contexts σ and σ′ are isomorphic if there exists a permutation ρ such that
ρ(σ) = σ′. It is easy to see that PENRC expressions cannot distinguish
between isomorphic inputs:

Lemma 7 (Genericity). Let e be a PENRC expression, let σ be a context
on e, and let ρ be a permutation of A. If e(σ) is defined, then so is e(ρ(σ))
and e(ρ(σ)) = ρ(e(σ)). If e(σ) is undefined, then so is e(ρ(σ)).

Theorem 8. The well-definedness problem for the PENRC is decidable.

Proof. Suppose that expression e is not well-defined under type assignment
Γ on e. By Proposition 6 there exists a natural number k, computable from
e, and some context σ ∈ Γ of width at most k such that e(σ) is undefined.

Let us denote the maximum number of atoms a value in type τ of width
at most k can mention by rank(τ, k). Then clearly,

rank(Atom, k) = 1
rank(Pair(τ1, τ2), k) = rank(τ1, k) + rank(τ2, k)
rank(SetOf(τ ′), k) = k × rank(τ ′, k)

rank(τ1 ∪ τ2, k) = max{rank(τ1, k), rank(τ2, k)}

9

Consequently, the maximum number of atoms mentioned in σ is bounded
by

l :=
∑

x∈dom(Γ)

rank(Γ(x), k).

Note that l is computable from Γ and e. Now fix some l-element subset A
of A. Since the number of different atoms occurring in σ is at most l there
surely exists a renaming ρ such that ρ(σ) mentions only atoms in A. By
genericity, e(ρ(σ)) is also undefined.

Hence, in order to check if e is well-defined under Γ, it suffices to check
whether e(γ) is defined for all contexts γ ∈ Γ which mention only atoms in
A. It is easy to see that there are only a finite number of such γ, from which
the result follows.

3.2 Small Model Properties

In this section we prove the small model property for undefinedness (Propo-
sition 6): if there is an input on which an expression e is undefined, then
there is also a “small” input on which it is undefined. We first note:

Lemma 9 (Type preservation). Let τ be a type. If w ∈ τ and vvw,
then also v ∈ τ .

The proof is by a straightforward induction on τ . In order to prove
Proposition 6 it hence suffices to show that, given an expression e and a
context σ for which e(σ) is undefined, we can deduce σ′vσ whose width
depends only on e such that e(σ′) is also undefined. We will prove this
property by induction on e by “tracing” the reason why e(σ) is undefined
through σ (from the bottom up). In order to do so we will need a small
model property for definedness, as we outline in the following example.

Example 10. Let e = {π1(x) | x ∈ e1} and suppose that σ is a context
on e for which e1(σ) = {a, (a, b), (c, d), (a, d)}. Since at some point we will
evaluate π1(x) on (x : a, σ) (which is undefined), it follows that e(σ) is also
undefined. Clearly, the undefinedness of π1(x)(x : a, σ) is solely due to the
fact that x is bound to the atom a. As we are searching for a “small”
context σ′vσ on which the whole expression e is undefined, we want to
make sure that at some point we still evaluate π1(x) under a context in
which x is bound to a. That is, we will want to construct σ′ in such a way
that {a}v e1(σ′). If, for example, e1 = R ∪ S with σ(R) = {a, (a, b)} and
σ(S) = {(a, b), (c, d), (a, d)}, then we could take σ′(R) = {a} and σ′(S) =
∅.

As this example illustrates, we will want to show that, given an expres-
sion e1, a context σ for which e1(σ) is defined, and a value uv e1(σ), we can
“trace” the reason that e1(σ) contains u through σ. In particular we want to

10

show that we can always deduce a context σ′vσ whose width depends only
on e1 and u such that uv e1(σ′). This is our small model property for de-
finedness, which we prove below. First however, some additional definitions
are in order.

Union of values We start by defining the union operation t on values of
the same kind:

at a := a (u1, u2)t(v1, v2) := (u1 t v1, u2 t v2) U tV := U ∪ V

On all other arguments, t is undefined. It is easy to see that ut v (if it
exists) is a least upper bound (according to v) of values u and v:

Lemma 11. If uvw and vvw, then ut v exists, uvut v, vvut v, and
(ut v)vw.

Recall that v is not anti-symmetric, so least upper bounds according to
v need not be unique, as already illustrated by the remark we made after
defining v in Section 3.1.

Note that, if u has width at most k and v has width at most l, then ut v
(if it exists) has width at most k+l. The value union is extended component-
wise to contexts: if σ and σ′ are contexts with the same domain, then σ tσ′ is
the context with (σ tσ′)(x) = σ(x)tσ′(x) for every x ∈ dom(σ). It follows
from Lemma 11 that, if σv γ and σ′v γ, then σ tσ′ exists, σvσ tσ′,
σ′vσ tσ′, and σ tσ′v γ. Moreover, if σ has width at most k and σ′ has
width at most l, then σ tσ′ (if it exists) has width at most k + l.

Minimization Next, we introduce the minimization operation minimize
on values:

minimize(a) := a

minimize(u1, u2) := (minimize(u1),minimize(u2))
minimize(V) := ∅

It is clear that minimize(v)v v and that minimize(v) has width zero. As
before, we extend the minimization operation component-wise to contexts:
minimize(σ)(x) := minimize(σ(x)).

Convention: In what follows we will write Vk for the set of all values of
width at most k and Ck for the set of all contexts of width at most k.

Proposition 12 (Small model property for definedness). For every
PENRC expression e there exists a computable function ce mapping natural
numbers to natural numbers such that for every natural number k, every con-
text σ on e for which e(σ) is defined, and every uv e(σ) of width at most k,
there exists a context σ′vσ of width at most ce(k) such that uv e(σ′). More-
over, an arithmetic expression defining ce is effectively computable from e.

11

Proof. Let e be a PENRC expression. Define the function ce inductively as
follows.

cx(k) := k

c(e1,e2)(k) := ce1(k) + ce2(k)

cπ1(e′)(k) := ce′(k)

cπ2(e′)(k) := ce′(k)

c∅(k) := 0
c{e′}(k) := k × ce′(k)

ce1∪e2(k) := ce1(k) + ce2(k)
cS

e′(k) := ce′(k)

c{e2|x∈e1}(k) := ce1(max{k, ce2(k)}) + k × ce2(k)

ce1=e2 ? e3 : e4(k) := max{ce3(k), ce4(k)}

It is clear from this inductive definition that an arithmetic expression defin-
ing ce can effectively be computed from e. It is also clear that ce is a
computable function mapping natural numbers to natural numbers. Let k
be a natural number, let σ be a context on e for which e(σ) is defined, and
let uv e(σ) be a value of width at most k. Define the predicate P (u, e, σ, k)
as follows:

P (u, e, σ, k) := {σ′ | σ′ ∈ Cce(k), σ
′vσ, and uv e(σ′)}.

We will prove by induction on e that P (u, e, σ, k) is non-empty, from which
the proposition follows. Note that, since e(σ) is defined, e(δ) is also defined
for every δvσ by monotonicity. We also remind the reader that if σ1vσ
has width at most k and σ2vσ has width at most l, then σ1 tσ2 exists
and has width at most k + l. Furthermore, σ1vσ1 tσ2, σ2vσ1 tσ2, and
σ1 tσ2vσ by Lemma 11. We will use these facts silently throughout the
induction.

• If e = x, then we define σ′ by

σ′(y) =

{
u if y = x

minimize(σ(y)) otherwise

• If e = ∅, then we take σ′ = minimize(σ).

• If e = (e1, e2), then e(σ) is a pair. Hence, u = (u1, u2) for some u1, u2 ∈
Vk. By the induction hypothesis there exist σ1 ∈ P (u1, e1, σ, k) and
σ2 ∈ P (u2, e2, σ, k). Then σ1 t σ2 ∈ Cce1 (k)+ce2 (k) = Cce(k). Moreover,
by monotonicity:

(u1, u2)v(e1(σ1), e2(σ2))v(e1(σ1 t σ2), e2(σ1 t σ2)) = e(σ1 t σ2)

Hence, σ1 tσ2 ∈ P (u, e, σ, k).

12

• If e = e1 ∪ e2, then e(σ) is a set. Since uv e(σ) there exists, for every
v ∈ u, a wv ∈ e(σ) such that vvwv. Define,

u1 := {v ∈ u | wv ∈ e1(σ)}
u2 := {v ∈ u | wv ∈ e2(σ)}

Then u = u1 ∪ u2, u1v e1(σ), and u2v e2(σ). Moreover, u1, u2 ∈ Vk.
The result then follows from the induction hypothesis by a reasoning
similar to the previous case.

• If e = π1(e′), then e′(σ) is a pair (v, w). Let u′ = (u,minimize(w)).
Then u′v(v, w) since uv v and minimize(w)vw. Moreover, u′ ∈ Vk
since minimize(w) ∈ V0. Hence there exists σ′ ∈ P (u′, e′, σ, k) by the
induction hypothesis. Hence,

u = π1(u′)vπ1(e′(σ′)) = e(σ′).

Since also Cce′ (k) = Cce(k), we have σ′ ∈ P (u, e, σ, k). The case where
e = π2(e′) is similar.

• If e = {e′}, then we discern two cases. If u = ∅, then it is clear that
uv e(σ′) for any σ′vσ. Hence, it suffices to take σ′ = minimize(σ),
which is in C0 ⊆ Cce(k). Otherwise, u contains at least one and at most
k elements. For each v ∈ u we have that v is of width at most k and
that vv e′(σ). Hence, there exists σv ∈ P (v, e′, σ, k) for every v ∈ u
by the induction hypothesis. Let σ′ =

⊔
v∈u σv. Then σv vσ′ for every

v ∈ u, and σ′vσ. By monotonicity we then have vv e′(σv)v e′(σ′),
and hence uv{e′(σ′)} = e(σ′). Moreover, σ′ ∈ Ck×ce′ (k) = Cce(k).
Hence, σ′ ∈ P (u, e, σ, k).

• If e =
⋃
e′, then e′(σ) is a set of sets. Since uv e(σ) there exists, for

every v ∈ u, a wv ∈ e(σ) such that vvwv. Let e′(σ) = {V1, . . . , Vn}.
Note that e(σ) = V1 ∪ · · · ∪ Vn. Define, for each i ∈ [1, n],

Ui := {v ∈ u | wv ∈ Vi \
⋃
j<i

Vj}.

Note that since u has width at most k, the cardinality of each of the
Ui’s is at most k and at most k of the ui’s are non-empty. Furthermore,
UivVi. Let u′ be the set of all non-empty Ui’s. Then u′v e′(σ) and
u′ ∈ Vk. The result then follows from the induction hypothesis.

• If e = e1 = e2 ? e3 : e4, then e1(σ), e2(σ) ∈ A. Suppose e1(σ) =
e2(σ), then uv e3(σ). By the induction hypothesis there exists σ′ ∈
P (u, e3, σ, k). Then e1(σ′) = e1(σ) = e2(σ) = e2(σ′) by monotonicity
and hence e(σ′) = e3(σ′). We then have by the induction hypothesis
that uv e3(σ′) = e(σ′). Since also σ′ ∈ Cce3 (k) ⊆ Cce(k), we have
σ′ ∈ P (u, e, σ, k). The case where e1(σ) 6= e2(σ) is similar.

13

• If e = {e2 | x ∈ e1}, then e(σ) is a set. Since uv e(σ) there exists, for
every v ∈ u, a value wv ∈ e(σ) such that vvwv. Since e(σ) is obtained
by a comprehension over e1(σ), there also must exist, for every v ∈ u,
a value zv ∈ e1(σ) such that wv = e2(x : zv, σ). Hence there exists,
for every v ∈ u, a context x : z′v, σ

′
v ∈ P (v, e2, (x : zv, σ), k) by the

induction hypothesis. Let u′ = {z′v | v ∈ u}. Then u′ contains at
most k elements of Vce2 (k). Hence, u′ ∈ Vm with m = max{k, ce2(k)}.
Moreover, x : z′v, σ

′vx : zv, σ by the induction hypothesis, so z′v v zv,
and hence u′v e1(σ).

By applying the induction hypothesis again, there exists σ1 ∈ P (u′, e1,
σ,m). Let σ′ = σ1 t

⊔
v∈u σ

′
v. Note that σ1vσ′ and σ′v vσ′, for every

v ∈ u. Furthermore, σ′vσ and the width of σ′ is bounded by:

ce1(max{k, ce2(k)}) + k × ce2(k) = c(e, k).

Now u′v e1(σ1)v e1(σ′) by monotonicity. Hence, for every z′v there
exists some z′′v ∈ e1(σ′) with z′v v z′′v . Then x : z′v, σ

′
v vx : z′′v , σ

′. Hence,
by monotonicity:

vv e2(x : z′v, σ
′
v)v e2(x : z′′v , σ

′).

Since this holds for every v ∈ u, we have uv e(σ′).

Lemma 13. For every PENRC expression e there exists a natural number
ke, computable from e, such that for every context σ on e for which e(σ)
is undefined, there exists σ′vσ of width at most ke such that e(σ′) is also
undefined.

Proof. By Proposition 12 there exists, for every expression e, a computable
function ce such that for every natural number k, every context σ on e for
which e(σ) is defined, and every uv e(σ) of width at most k, there exists
a context σ′vσ of width at most ce(k) such that uv e(σ′). Let, for every
expression e, the natural number ke be inductively defined as follows:

kx := 0
k(e1,e2) := max{ke1 , ke2}
kπ1(e′) := ke′

kπ2(e′) := ke′

k∅ := 0
k{e′} := ke′

ke1∪e2 := max{ke1 , ke2}
kS

e′ := max{ke′ , ce(1)}
k{e2|x∈e1} := max {ke1 , ce1(max{1, ke2}) + ke2}

ke1=e2 ? e3 : e4(k) := max{ke1 , ke2 , ke3 , ke4}

14

Since an arithmetic expression defining ce′ is computable from e′ by Propo-
sition 12, it follows that ke is effectively computable from e. Let e be a
PENRC expression and let σ be a context on e for which e(σ) is undefined.
We prove by induction on e that there exists σ′vσ of width at most ke such
that e(σ′) is also undefined.

• If e = x or e = ∅, then there is nothing to prove, since e(σ) is always
defined.

• If e = (e1, e2), then either e1(σ) or e2(σ) is undefined. The result
then follows by the induction hypothesis. The case where e = {e′} is
similar.

• If e = π1(e′), then either e′(σ) is undefined, in which case the result
follows from the induction hypothesis, or e′(σ) is not a pair. In that
case, let σ′ = minimize(σ). By monotonicity e′(σ′) cannot be a pair
and hence e(σ′) is also undefined. Moreover, σ′ ∈ C0 ⊆ Cke .

• If e = e1 ∪ e2, then either e1(σ) is undefined, e2(σ) is undefined, e1(σ)
is not a set, or e2(σ) is not a set. In the first two cases the result follows
from the induction hypothesis. In the third case, let σ′ = minimize(σ).
By monotonicity e1(σ) cannot be a set and hence e(σ′) is undefined.
Moreover, σ′ ∈ C0 ⊆ Cke . The last case is similar.

• If e =
⋃
e′, then either e′(σ) is undefined, in which case the result

follows from the induction hypothesis, or e′(σ) is not a set of sets.
In that case we discern two possibilities. If e′(σ) is not a set, then
let σ′ = minimize(σ). By monotonicity, e′(σ′) cannot be a set and
hence e(σ) is undefined. Moreover, σ′ ∈ C0 ⊆ Cke . If e′(σ) is a
set, but not a set of sets, then there exist some u ∈ e′(σ) that is
not a set. Then {minimize(u)} ∈ V1 and {minimize(u)}v e′(σ). By
Proposition 12 there exists σ′′ ∈ Cce′ (1) ⊆ Cke with σ′′vσ such that
{minimize(u)}v e′(σ′′). Hence, e′(σ′′) is not a set of sets and e(σ′′) is
also undefined.

• If e = e1 = e2 ? e3 : e4, then we discern the following possibilities.

1. If e1(σ) or e2(σ) is undefined, then the result follows from the
induction hypothesis.

2. If e1(σ) and e2(σ) are defined, but e1(σ) is not an atom, then let
σ′ = minimize(σ). By monotonicity, e1(σ′) cannot be an atom
and hence e(σ′) is undefined. Moreover, σ′ ∈ C0 ⊆ Cke . The case
where e1(σ) and e2(σ) are defined, but e2(σ) is not an atom is
similar.

3. If e1(σ) and e2(σ) are defined, e1(σ) and e2(σ) are atoms, and
e1(σ) = e2(σ), then e3(σ) must be undefined. By the induction

15

hypothesis, there exists σ′ ∈ Cke3
⊆ Cke with σ′vσ such that

e3(σ′) is also undefined. By monotonicity e1(σ′) = e2(σ′), and
hence e(σ′) is undefined. If e1(σ) 6= e2(σ) the reasoning is similar.

• If e = {e2 | x ∈ e1}, then we discern the following possibilities.

1. If e1(σ) is undefined, then the result follows from the induction
hypothesis.

2. If e1(σ) is defined, but is not a set, then let σ′ = minimize(σ). By
monotonicity, e1(σ′) cannot be a set and hence e(σ′) is undefined.
Moreover, σ′ ∈ C0 ⊆ Cke .

3. Otherwise, e1(σ) is defined and a set, but there is some v ∈ e1(σ)
such that e2(x : v, σ) is undefined. By the induction hypothe-
sis, there exists x : u, σ2 ∈ Cke2

with x : u, σ2vx : v, σ such that
e2(x : u, σ2) is undefined. Then {u} ∈ Vmax{1,ke2} and {u}v e1(σ).
By Proposition 12 there exists σ1 ∈ Cce1 (max{1,ke2}) with σ1vσ
such that {u}v e1(σ1). Since both σ1vσ and σ2vσ, σ1 tσ2

is defined by Lemma 11. Let σ′ = σ1 t σ2. Note that σ1vσ′
and σ2vσ′ by Lemma 11. By monotonicity {u}v e1(σ′). Hence,
there exists some u′ ∈ e1(σ′) such that uvu′. Then x : u, σ2v
x : u′, σ′, and hence e2(x : u′, σ′) is also undefined by monotonic-
ity. Hence, e(σ′) is undefined. Moreover,

σ′ ∈ Cce1 (max{1,ke2})+ke2
⊆ Cke .

Proposition 6 now follows by Lemma 13 and Lemma 9. Indeed, let e
be a PENRC expression, let Γ be a type assignment on e, and let σ ∈ Γ
such that e(σ) is undefined. By Lemma 13 there a natural number ke,
computable from e alone, and σ′vσ of width at most ke such that e(σ′)
is also undefined. Since σ ∈ Γ, it follows that σ′ is also in Γ by Lemma 9.
Hence the proposition.

4 The impact of singleton coercion

The expressions of the NRC are designed around the guiding principle that
every value constructor should have a corresponding “destructor” [23]. As
such, the pair constructor (e1, e2) has the projection operations π1 and π2

as destructors, and the set union e1 ∪ e2 has set comprehension as a “de-
structor”. The singleton set constructor has no corresponding destructor in
the standard NRC, however. In this section we study the well-definedness
problem for the PENRC in the presence of such a destructor.1

1We note that OQL, the object-oriented cousin of SQL, also has such a destructor,
written element(e).

16

Formally, we denote by PENRC(extract) the version of the PENRC to
which we add extract as an expression:

e ::= · · · | extract(e).

The semantics of extract is defined as follows:

σ |= e⇒ {v}
σ |= extract(e) ⇒ v

That is, extract coerces a singleton {v} into the value v it contains and is
undefined on other inputs.

Although extract appears quite harmless at first sight, it invalidates
one of the fundamental monotonicity properties we use to prove our small
model property for undefinedness. Indeed, it is no longer true that if e(σ)
is undefined and σvσ′, then e(σ′) is also undefined. For example, take
e = extract(x), σ(x) = {{a}, {a, b}}, and σ′(x) = {{a, b}}). It is clear that
e(σ) is undefined, but e(σ′) is not. Note however that {{a}, {a, b}}v{{a, b}}
since both {a} and {a, b} are contained in {a, b}.

One could hope to find another containment relation under which we
regain our monotonicity property and can redo the proof in the previous
section. Unfortunately however, such a containment relation does not exist.
Indeed, we will show that the well-definedness problem for PENRC(extract)
is undecidable. To see why, the following definition is in order.

Definition 14. Let e1 and e2 be two expressions with the same set of free
variables, such that e1 and e2 are well-defined under type assignment Γ. We
say that e1 and e2 are equivalent under Γ when e1(σ) = e2(σ) for every
σ ∈ Γ. The equivalence problem consists of checking, given such e1, e2, and
Γ, whether e1 and e2 are equivalent under Γ.

Note that the well-definedness problem for PENRC(extract) is at least as
difficult as the equivalence problem for the PENRC. Indeed, e1 is equivalent
to e2 under Γ if, and only if, extract({e1}∪ {e2}) is well-defined under Γ (as
e1 and e2 are already well-defined under Γ). Hence, the undecidability of
well-definedness for PENRC(extract) follows from the following theorem.

Theorem 15. The equivalence problem for PENRC is undecidable.2

Proof. In order to focus on the crux of the proof, we will assume without
loss of generality that the PENRC is equipped with tuples of arbitrary (but
fixed) arity. This feature can clearly be encoded using pairs. For example,
we could encode t = (a1, a2, a3) by t′ = (a1, (a2, a3)). We also assume
that we have projection functions for such tuples. For example, π3(t) can

2We note that, in contrast, the containment problem for the PENRC (with regard to
v, not ordinary set-containment) in the absence of union is decidable [12].

17

be simulated by π2(π2(t′)). As an extension of this, if I = i1, . . . , in is a
sequence of positive integers, then we write ΠI(t) for (πi1(t), . . . , πin(t)).
Furthermore, we will use the polyadic type constructor Tuple(τ1, . . . , τn)
which denotes the set of all tuples t of arity n such that πi(t) ∈ τi for
all i ∈ [1, n]. This type constructor can be simulated using the pair type
constructor. For example, Tuple(Atom,Atom,Atom) can be simulated
by Pair(Atom,Pair(Atom,Atom)). Finally, we will allow conditional
tests to compare entire tuples of atomic values with the same arity. Again,
this can be simulated using only tests on atomic values.

The proof is by a reduction from the implication problem of functional
and inclusion dependencies over a single relation symbol, which is known
to be undecidable [1, 10]. This problem is defined as follows. Let x be a
variable, let n be a natural number, and let Γ be the type assignment with
domain {x} such that

Γ(x) = SetOf(Tuple(Atom,Atom, . . . ,Atom︸ ︷︷ ︸
n times

)).

A functional dependency is a rule of the form X → Y where X and Y are
sequences over [1, n]. We say that a context σ ∈ Γ satisfies X → Y , denoted
by σ |= X → Y , if for all tuples t1, t2 ∈ σ(x), if πX(t1) = πX(t2) then also
πY (t1) = πY (t2). An inclusion dependency is a rule of the form X ⊆ Y
where X and Y are sequences over [1, n] of the same length. We say that
σ ∈ Γ satisfies X ⊆ Y , denoted by σ |= X ⊆ Y if

{πX(t) | t ∈ σ(x)} ⊆ {πY (t) | t ∈ σ(x)}.

Let Σ be a finite set of functional and inclusion dependencies. We say
that σ ∈ Γ satisfies Σ, denoted by σ |= Σ, if σ satisfies every dependency
in Σ. Let ρ be an additional target functional dependency. We say that Σ
implies ρ if every context σ which satisfies Σ also satisfies ρ. The implication
problem for functional and inclusion dependencies consists of checking, given
n, Σ, and ρ, whether Σ implies ρ. It is well-known that this problem is
undecidable [1, 10].

We reduce the implication problem to the equivalence problem by con-
structing two expressions which are equivalent under Γ if, and only if, Σ
implies ρ. For every functional dependency X → Y ∈ Σ∪ {ρ} we define the
expression eX→Y as follows:⋃ {⋃

{ΠX(t1) = ΠX(t2) ∧ΠY (t1) 6= ΠY (t2) ? {x} : ∅ | t2 ∈ x}
∣∣∣ t1 ∈ x} .

On input σ ∈ Γ this expression returns ∅ if σ |= X → Y and {σ(x)} other-
wise. For every inclusion dependency X ⊆ Y ∈ Σ we define the expression
eX⊆Y as follows:{⋃

{ΠX(t1) = ΠY (t2) ? {x} : ∅ | t2 ∈ x}
∣∣ t1 ∈ x} ∪

{
{x}

}
.

18

On input σ ∈ Γ this expression returns {{σ(x)}} if σ |= X ⊆ Y and
{{σ(x)}, ∅} otherwise.

Let φ1, . . . , φk be the functional dependencies in Σ and let ψ1, . . . , ψl be
the inclusion dependencies in Σ. By construction, Σ implies ρ if, and only if,
for every σ ∈ Γ, whenever all the eφi

(σ) = ∅ and all the eψj
(σ) = {{σ(x)}},

then eρ(σ) = ∅. Then let f0 be the expression

f0 := (eφ1 , . . . , eφk
, eψ1 , . . . , eψl

, eρ).

Furthermore, let f1, . . . , fp be all the expressions of the form

(r1, . . . , rk, s1, . . . , sl, t),

where the ri are either ∅ or {x}, the sj are either {{x}} or {{x}}∪ {∅}, and
t is either ∅ or {x} such that, if the ri are all of the form ∅ and the sj are
all of the form {{x}}, then t is ∅. Then Σ implies ρ if, and only if, for every
σ ∈ Γ there exists j ∈ [1, p] such that f0(σ) = fj(σ). Hence Σ implies ρ if,
and only if,

({f0} ∪ {f1} ∪ · · · ∪ {fp}) (σ) = ({f1} ∪ · · · ∪ {fp}) (σ),

for every σ ∈ Γ.

Corollary 16. The well-definedness problem for PENRC(extract) is unde-
cidable.

Interestingly enough, the well-definedness problem for PENRC(extract)
evaluated under a list-based instead of a set-based semantics is decidable,
as we show in our companion paper [20].

5 The impact of type tests

Modern programming languages have type test expressions which allow the
inspection of the type of a value at runtime. The manner in which the value
is to be processed can depend on the outcome of such an inspection. For
example, the expression

x ∈ Pair(Atom,Atom) ? {π1(x)} : ∅

computes {π1(x)} if x is a pair of atoms and ∅ otherwise. In this section
we study the well-definedness problem for the PENRC extended with such
a type test expression:

e ::= · · · | e ∈ τ ? e : e.

Here, τ ranges over types. The resulting language will be denoted by
PENRC(type). The semantics of a type test is the obvious one:

σ |= e1 ⇒ v1 v1 ∈ τ σ |= e2 ⇒ v

σ |= e1 ∈ τ ? e2 : e3 ⇒ v

σ |= e1 ⇒ v1 v1 6∈ τ σ |= e3 ⇒ v

σ |= e1 ∈ τ ? e2 : e3 ⇒ v

19

Proposition 17. The NRC is semantically contained in PENRC(type); in
other words, type tests can be used to simulate emptiness tests.

Indeed, the emptiness test e1 = ∅ ? e2 : e3 can be expressed as follows:

{(x, x) | x ∈ e1} ∈ SetOf(Atom) ? e2 : e3.

If e1 returns the empty set, then the comprehension {(x, x) | x ∈ e1} also
returns the empty set (which is a set of atoms) and we evaluate e2. Other-
wise, the comprehension returns a set of pairs (which is not a set of atoms)
and we evaluate e3.

It follows from Theorem 3 that well-definedness for PENRC(type) is un-
decidable.

Corollary 18. The well-definedness problem for PENRC(type) is undecid-
able.

Type tests are hence too powerful a feature with regard to deciding well-
definedness. Still, when dealing with heterogeneous collections a limited
form of type tests is desirable. We clarify this claim by an example.

Example 19. Let e = {π1(x) | x ∈ R}. This expression is well-defined
under the type assignment Γ with Γ(R) = SetOf(Pair(Atom,Atom)),
but is undefined under the type assignment Γ′ with

Γ′(R) = SetOf(Pair(Atom,Atom) ∪Atom).

Indeed, every comprehension processes the set over which it iterates in a
uniform manner. Hence, although a set value can in principle be heteroge-
neous, such values cannot be processed in a well-defined manner. When we
can check at runtime whether or not x contains a pair however, then e can
be rewritten as follows:

e′ =
⋃
{x ∈ Pair ? {π1(x)} : ∅ | x ∈ R}.

It is clear that e′ computes the same result as e on contexts Γ and that e′

is well-defined under Γ′. Therefore, when we wish to query heterogeneous
sets, we need to be able to distinguish the various forms of the elements of
the sets at runtime.

As a limited form of type tests, we propose the following. A kind is a
term generated by the following grammar:

κ ::= Atom | Pair | Set

Here, κ ranges over kinds. A kind denotes a set of values, which is the set of
all atoms, the set of all pairs of values, and the set of all finite sets of values,

20

respectively. We will not distinguish between a kind and its denotation. We
extend the PENRC with the ability to test the kind of a value at runtime:

e := · · · | e ∈ κ ? e : e

Here, κ ranges over kinds. We write PENRC(kind) for the obtained lan-
guage. The semantics of kind tests is the obvious one:

σ |= e1 ⇒ v1 v1 ∈ κ σ |= e2 ⇒ v

σ |= e1 ∈ κ ? e2 : e3 ⇒ v

σ |= e1 ⇒ v1 v1 6∈ κ σ |= e3 ⇒ v

σ |= e1 ∈ κ ? e2 : e3 ⇒ v

Lemma 20. Let κ be a kind and let v and w be values such that vvw.
Then v ∈ κ if, and only if, w ∈ κ.

The proof is by an easy case analysis on κ. As a consequence, it is easy
to see that the PENRC(kind) is also monotone (in the sense of Lemma 4).
We can therefore extend the proofs of Proposition 12 and Lemma 13 to show
that the PENRC(kind) also has the small model properties for definedness
and undefinedness.

Proposition 21. For every PENRC(kind) expression e there exists a com-
putable function ce mapping natural numbers to natural numbers such that
for every natural number k, every context σ on e for which e(σ) is defined,
and every uv e(σ) of width at most k, there exists a context σ′vσ of width
at most ce(k) such that uv e(σ′). Moreover, an arithmetic expression defin-
ing ce is effectively computable from e.

Proof. Let e be a PENRC(kind) expression. Add the following induction
step to the definition of the function ce in the proof of Proposition 12:

ce1∈κ ? e2 : e3(k) := max{ce2(k), ce3(k)}.

It is clear that an arithmetic expression defining ce remains computable from
e and that ce is a computable function mapping natural numbers to natural
numbers. Let k be a natural number, let σ be a context on e for which
e(σ) is defined, and let uv e(σ) be a value of width at most k. We prove
by induction on e that there exists σ′vσ of width at most ce(k) such that
uv e(σ′). We only treat the case where e = e1 ∈ κ ? e2 : e3, as the other
cases are the same as in the proof of Proposition 12.

So, let e = e1 ∈ κ ? e2 : e3. We discern two cases. If e1(σ) ∈ κ
then uv e2(σ). By the induction hypothesis there exist σ′vσ of width at
most ce2(k) such that uv e2(σ′). By monotonicity, e1(σ′)v e1(σ). Hence,
e1(σ′) ∈ κ by Lemma 20. Then e(σ′) = e2(σ′), and hence uv e2(σ′) = e(σ′).
Since σ′ ∈ Cce2 (k) ⊆ Cce(k), the result follows. The case where e1(σ) 6∈ κ is
similar.

21

Lemma 22. For every PENRC(kind) expression e there exists a natural
number ke, computable from e, such that for every context σ on e for which
e(σ) is undefined, there exists σ′vσ of width at most ke such that e(σ′) is
also undefined.

Proof. Let e be a PENRC(kind) expression. Add the following induction
step to the definition of the natural number ke in the proof of Lemma 13:

ke1∈κ ? e2 : e3 := max{ke1 , ke2 , ke3}.

It is clear that ke remains computable from e. Let σ be a context on e for
which e(σ) is undefined. We prove by induction on e that there exists σ′vσ
of width at most ke such that e(σ′) is also undefined. We only treat the case
where e = e1 ∈ κ ? e2 : e3, as the other cases are the same as in the proof
of Lemma 13.

So, let e = e1 ∈ κ ? e2 : e3. If e1(σ) is undefined, then the result
follows from the induction hypothesis. If e1(σ) is defined and e1(σ) ∈ κ,
then e2(σ) must be undefined. By the induction hypothesis we have σ′ ∈
Cke2

⊆ Cke with σ′vσ such that e2(σ′) is still undefined. By monotonicity,
e1(σ′)v e1(σ), and hence e1(σ′) ∈ κ by Lemma 20. Hence, e(σ′) is also
undefined. If e1(σ) is defined and e1(σ) 6∈ κ, then the reasoning is similar.

As a corollary to this lemma and Lemma 9, the small model property
for undefinedness continues to hold in the presence of kind tests. It readily
follows (cf. the proof of Theorem 8):

Theorem 23. The well-definedness problem for PENRC(kind) is decidable.

6 Semantic type-checking

A problem that is reminiscent of the well-definedness problem is the semantic
type-checking problem: given an expression e, a type assignment Γ under
which e is well-defined, and an output type τ , check that e(σ) ∈ τ for every
σ ∈ Γ. If so, then we say that e has output type τ under Γ.

It is easily seen that the satisfiability problem for the NRC reduces to the
semantic type-checking problem for the NRC. Indeed, the NRC expression

e = ∅ ? {x} : (x, x)

has output type SetOf(Γ(x)) under type assignment Γ if, and only if, e is
unsatisfiable. As a consequence, the semantic type-checking problem for the
NRC is undecidable.

Proposition 24. The semantic type-checking problem for the NRC is un-
decidable.

22

On the positive side, the semantic type-checking problem for the PENRC
with kind tests is decidable, as we will show below. We first note:

Lemma 25. If τ is a type and v 6∈ τ , then there exists a natural number k,
computable from τ , and a value uv v of width at most k such that u 6∈ τ .

Proof. Let us define the complexity c(τ) of a type τ as follows.

c(Atom) := 0
c(Pair(τ1, τ2)) := max(c(τ1), c(τ2))
c(SetOf(τ ′)) := max(1, c(τ ′))

c(τ1 ∪ τ2) := c(τ1) + c(τ2)

Let τ be a type and let v 6∈ τ . We show that there exists a value u ∈ Vc(τ)
with uv v such that u 6∈ τ by induction on τ .

• If τ = Atom, then take u = minimize(v).

• If τ = Pair(τ1, τ2), then either

1. v is not a pair, in which case we take u = minimize(v); or

2. v = (v1, v2) with v1 6∈ τ1 or v2 6∈ τ2. The result then follows from
the induction hypothesis.

• If τ = SetOf(τ ′), then either

1. v is not a set, in which case we take u = minimize(v), or

2. there exists some v′ ∈ v such that v′ 6∈ τ ′. By the induction
hypothesis there exists u′ ∈ Vc(τ ′) such that u′v v′ and u′ 6∈ τ ′.
Then {u′}v v and {u′} 6∈ τ .

• Finally, if τ = τ1 ∪ τ2, then v 6∈ τ1 and v 6∈ τ2. By the induction
hypothesis there exist u1 ∈ c(τ1) and u2 ∈ c(τ2) with u1v v and u2v v
such that u1 6∈ τ1 and u2 6∈ τ2. Take u = u1 tu2 and suppose that
u ∈ τ . Then either u ∈ τ1 or u ∈ τ2. If u ∈ τ1, then also u1vu would
have to be in τ1 by Lemma 9, which is a contradiction. If u ∈ τ2,
then also u2vu would have to be in τ2, which is also a contradiction.
Hence, u 6∈ τ . Moreover, u ∈ Vc(τ1)+c(τ2) = Vc(τ).

Corollary 26 (Small model for semantic type-checking). Let e be a
PENRC(kind)-expression, let Γ be a type assignment under which e is well-
defined, and let τ be a type. If e does not have output type τ under Γ, then
there exists a natural number k, computable from e and τ , and a context
σ′ ∈ Γ of width at most k such that e(σ′) 6∈ τ .

23

Proof. Suppose that e does not have output type τ under Γ. Then there
exists a context σ ∈ Γ such that e(σ) 6∈ τ . There exists a natural number l,
computable from τ , and a value uv e(σ) of width at most l such that u 6∈ τ
by Lemma 25. By Proposition 21 there exists a computable function ce,
computable from e, and a context σ′vσ of width at most k := ce(l) such
that uv e(σ′). Since u 6∈ τ , e(σ′) is also not in τ by Lemma 9. Since σ ∈ Γ,
also σ′ ∈ Γ by Lemma 9.

It readily follows (cf. the proof of Theorem 8):

Proposition 27. The semantic type-checking problem for PENRC(kind) is
decidable.

7 Conclusion

We have shown that the well-definedness problem, which is undecidable
for any general-purpose programming language, remains undecidable for
special-purpose query languages powerful enough to simulate the relational
algebra. Specifically, we have shown that the well-definedness problem for
the NRC is undecidable. In contrast, this problem becomes decidable when
one limits the NRC to its positive-existential fragment. The core reason for
this decidability is a small model property. If we add a singleton coercion
operator to the PENRC, then well-definedness becomes undecidable again.
The well-definedness for the PENRC also becomes undecidable if we add a
type test construct. Fortunately, well-definedness remains decidable if we
limit ourselves to kind tests, a limited form of type tests. Finally, we have
shown that the semantic type-checking problem is also undecidable for the
full NRC, although it is decidable for the PENRC with kind tests.

It is clear that for the settings where the well-definedness problem is de-
cidable, the proposed algorithm of enumerating all possible counter-examples
is computationally expensive. Therefore, a precise analysis of the compu-
tational complexity of the well-definedness problem is desirable, as is an
investigation on how to obtain an algorithm which performs well in prac-
tice.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations Of
Databases. Addison-Wesley, 1995.

[2] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu.
Typechecking XML views of relational databases. ACM Transactions
on Computational Logic, 4(3):315–354, 2003.

24

[3] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu.
XML with data values: typechecking revisited. Journal of Computer
and System Sciences, 66(4):688–727, 2003.

[4] Francois Bancilhon and Setrag Khoshafian. A calculus for complex
objects. In Proceedings of the fifth ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, pages 53–60. ACM Press, 1986.

[5] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query
Language. W3C Working Draft, February 2005.

[6] Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL: a query
language and algebra for semistructured data based on structural re-
cursion. VLDB Journal, 9(1):76–110, 2000.

[7] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong.
Principles of programming with complex objects and collection types.
Theoretical Computer Science, 149(1):3–48, 1995.

[8] R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David
Jordan, Craig Russell, Olaf Schadow, Torsten Stanienda, , and Fer-
nando Velez, editors. The Object Data Standard: ODMG 3.0. Morgan
Kaufmann, 2000.

[9] Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An
XML query language for heterogeneous data sources. In The World
Wide Web and Databases: WebDB 2000. Selected Papers, volume 1997
of Lecture Notes in Computer Science, pages 1–25. Springer-Verlag,
2001.

[10] Ashok K. Chandra and Moshe Y. Vardi. The implication problem for
functional and inclusion dependencies is undecidable. SIAM Journal
on Computing, 14(3):671–677, 1985.

[11] Mary F. Fernández, Daniela Florescu, Alon Levy, and Dan Suciu.
Declarative specification of Web sites with Strudel. The VLDB Journal,
9:38–55, 2000.

[12] Alon Y. Levy and Dan Suciu. Deciding containment for queries
with complex objects (extended abstract). In Proceedings of the Six-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
Database Systems, pages 20–31. ACM Press, 1997.

[13] Wim Martens and Frank Neven. Typechecking top-down uniform un-
ranked tree transducers. In Database Theory - ICDT 2003, volume 2572
of Lecture Notes in Computer Science, pages 64–78. Springer-Verlag,
2003.

25

[14] Wim Martens and Frank Neven. Frontiers of tractability for type-
checking simple XML transformations. In Proceedings of the Twenty-
third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 23–34. ACM Press, 2004.

[15] Jim Melton and Alan R. Simon. SQL 1999: Understanding Relational
Language Components. Morgan Kaufmann, 2002.

[16] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans-
formers. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 11–22.
ACM Press, 2000.

[17] John C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[18] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[19] Dan Suciu. Typechecking for semistructured data. In Database Pro-
gramming Languages, 8th International Workshop, DBPL 2001, Re-
vised Papers, volume 2397 of Lecture Notes in Computer Science, pages
1–20. Springer-Verlag, 2001.

[20] Stijn Vansummeren. Deciding well-definedness of first-order, object-
creating operations over tree-structured data. http://alpha.
uhasselt.be/~lucg5855/pubs.html.

[21] Stijn Vansummeren. Deciding well-definedness of XQuery fragments.
In PODS, 2005.

[22] Limsoon Wong. Normal forms and conservative properties for query
languages over collection types. In Proceedings of the twelfth symposium
on Principles of Database Systems, pages 26–36. ACM Press, 1993.

[23] Limsoon Wong. Querying nested collections. PhD thesis, University of
Pennsylvania, 1994.

26

