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Exemplar theory was first developed as a model of similarity and classification in perception.
In this paper, the theory is extended to model speech production as well as speech perception.
Straightforward extension of the model provides a formal framework for thinking about the
quantitative predictions of usage-based phonology, as proposed by Bybee. A model is proposed
which allows us to derive the finding that leniting historical changes are more advanced in
frequent words than in rarer ones. Calculations using this model are presented which reveal
the interaction of production noise, lenition and entrenchment. A realistic treatment is also
provided for the time course of a phonological merger which originates from lenition of a
marked category.

1 Introduction

Over the last decades, a considerable body of evidence has accumulated that speakers have
detailed phonetic knowledge of a type which is not readily modelled using the categories and
categorical rules of phonological theory. One line of evidence is systematic differences between
languages in fine details of pronunciation. For example, it is known that Spanish and English
differ systematically in the exact formant patterns typical of their point vowels (Bradlow 1995).
Canadian French differs from both Canadian English and European French in the distribution
of VOT times of voiced and voiceless stops (Caramazza and Yeni-Komshian, 1974). These are
just two of many examples, with more reviewed in Pierrehumbert (in press) and Pierrehumbert
et al. (in press); at this point, it is not possible to point to a single case in which analogous
phonemes in two different languages display exactly the same phonetic targets and the same
pattern of phonetic variation in different contexts. Exact phonetic targets and patterns of
variation must accordingly be learned during the course of language acquisition. The usage-
based framework readily accomodates such findings by proposing that mental representations
of phonological targets and patterns are gradually built up through experience with speech.
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A particularly interesting and challenging result is the discovery that learned phonetic
detail may be associated not just with languages or dialects, but even with specific words in
the lexicon of a given dialect. This observation is made most convincingly in a series of studies
by Bybee which explore the relationship of word frequency to lenition. Bybee (Hooper 1976)
explored the process of schwa reduction and desyllabification which applies variably before
sonorants such as /r/ and /n/ in English. She found that in high frequency words, such as
every and the noun evening , the schwa was completely absent and the syllable it originally
projected had vanished. In mid-frequency words, such as memory and salary , the modal
outcome is a syllabic /r/. In rare words, such as mammary and artillery , the modal outcome
is a schwa plus /r/. Another example is provided by so-called t/d-deletion, which is widely
acknowledged to be a case of variable undershoot of the coronal articulation of the /t/ or
/d/. Bybee (2000) found that deletion – defined as the inability of the transcriber to hear the
stop on a tape-recording – is more prevalent in high-frequency words than in low-frequency
words. The set of double-marked past tense verbs (such as told and left) provides a way to
control for the morphological factors which could play a part in this pattern. Within the set
of double-marked pasts alone, Bybee’s data showed a statistically significant relationship of
word frequency to the rate of /t/ deletion, with the most frequent word (told ) having /d/
deleted in 68% of cases while the least frequent (meant ) never had the /t/ deleted. Further
documentation of the association between word frequency and leniting historical change is
provided in Phillips (1984, this volume).

Although these frequency effects will be the main focus in this paper, is is also important
to acknowledge that word-specific allophony has been found in a number of other situations as
well. For example, Yaeger-Dror and Kemp (1992) and Yaeger-Dror (1996) demonstrate that
words in a particular cultural/semantic field in Montreal French have resisted a historical shift
in the vowel system and as a result display idiosyncratic vowel quality. Hay (2000) also presents
data relating degree of morphological decomposibility to degree of /t/ lenition in words such
as ”shiftless”.

These results challenge standard models of phonology and phonetics at two levels. First,
in all standard models, the lexicon is distinguished from the phonological grammar. The
exact phonetic details of a word’s pronunciation arise because the word is retrieved from the
lexicon, and processed by the rules or constraints of the grammar whose result (the surface
phonological form of the word) is fed to a phonetic implementation component. The phonetic
implementation component computes the articulatory and/or acoustic goals which actualize
the word as speech. The phonetic implementation component applies in exactly the same way
to all surface phonological representations, and the outcome depends solely on the categories
and prosodic structures displayed in those representations. As a result, there is no way in
which the phonetic implementation can apply differently to some words than to others. If a
phonetic implementation rule is variable and gradient, then the same probability distribution
of outcomes would arise for all words which meet the structural description of the rule. This
generic feature of modular generative models with phonetic implementation rules is developed
at more length in Pierrehumbert (1994).

A second challenge arises from the fact that the differential phonetic outcomes relate specifi-
cally to word frequency. Standard generative models do not encode word frequency. They treat
the word frequency effects which are so pervasive in experiments involving priming or lexical
decision tasks as matters of linguistic performance rather than linguistic competence. Thus
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the intrusion of word frequency into a traditional area of linguistics, namely the conditioning
of allophony, is not readily accommodated in the classical generative viewpoint.

If each word corresponded to a completely idiosyncratic phonetic signal, then results such
as Bybee’s could be readily formalized in a highly transparent scientific model. We would
simply assume that holistic gestural or acoustic templates are associated with word meanings.
The real challenge arises from the fact that the classical view does provide important insights
about the mental representation of phonology. Although a word may have idiosyncratic pho-
netic properties, it is perceived as made up of units of sound structure which are also shared
with other words. The existence of these subparts – whether phonemes, moras, or syllables
– is reflected in productive behaviors such as pronunciation of neologisms and loan word as-
similations. It is also reflected in the tendency of historical changes to sweep through the
vocabulary. Thus, the correct model must describe the interaction of word-specific phonetic
detail with more general principles of phonological structure.

In this paper, we will develop a formal architecture which is capable of capturing these
regularities. This formal architecture is ”generative” in the sense that it provides explicitly for
phonological representations and processes; it predicts that some outcomes are possible and
others are not. Like a generative grammar, it is informed by the goal of specifying all and only
the outcomes which are possible in human language. It represents a considerable departure
from generative models, however, in the way the lexical representations are organized and the
consequences of lexical representation for speech production. Specifically, the model assumes
that detailed phonetic memories are associated with individual words and it implicitly defines
word specific probability distributions over phonetic outcomes. Whereas the classic models
define a strong separation between the lexicon and the grammar, in the present model these
represent two degrees of generalization over the same memories and are thus strongly related
to each other. Furthermore, in the present model, frequency information plays an intrinsic
role in the system because it is implicitly encoded by the very nature of the memory system.
These general properties of the model all originate from the psychological model of memory
and classification from which the proposal derives, namely exemplar theory. From its origins
as a model of perception and classification only, it is extended to be a model of perception,
production, and the consequences of the perception-production loop over time.

2 Exemplar Theory

Exemplar theory was first introduced in psychology as a model of perception and catego-
rization. It was subsequently extended specifically to speech sounds by Johnson (1996) and
Lacerda (in press), providing a highly successful model of vowel categorization in particular.
Goldinger (1996) also applies the strongly related model of Hintzman (1986) to model the
identification and recognition of words. I will adopt some key assumptions from this previous
work, indicating briefly the empirical motivation for these assumptions.

In an exemplar model, each category is represented in memory by a large cloud of re-
membered tokens of that category. These memories are organized in a cognitive map, so that
memories of highly similar instances are close to each other and memories of dissimilar in-
stances are far apart. The remembered tokens display the range of variation that is exhibited
in the physical manifestations of the category. For example, the remembered tokens of the
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vowel /ε/ would exhibit a variety of formant values (related to variation in vocal tract anatomy
across speakers, variation along the dimension of hypo-hyperarticulation, and so forth) as well
as variation in f0 and in duration. The entire system is then a mapping between points in a
phonetic parameter space and the labels of the categorization system. The labels constitute
a level of representation in their own right, or else they may be viewed as functional links to
other levels of representation.

It is important to note that the same remembered tokens may be simultaneously subject
to more than one categorization scheme, under such a model. For example, a recollection of
the phrase Supper’s ready! could be labelled as ”Mom” and ”female speech”, in addition to
exemplifying the words and phonemes in the phrase.

If every encountered token of a category is stored as a separate exemplar, then frequent
categories will obviously be represented by numerous tokens and infrequent categories will be
represented by less numerous tokens. The difference in token count is one ingredient of the
model’s explanations of frequency effects, as we will see below. The mind’s capacity for long-
term memories of individual examples is in fact astonishingly large, as experiments reviewed
in Johnson (1996) indicate. Nonetheless, the volume of speech which a person processes in
a lifetime is so great that we would not wish to assume individual memories of every use of
every word.

Exemplar theory responds to this problem in two ways. First of all, we assume that
memories decay. Memories of utterances that we heard yesterday are more vivid than memories
from a decade ago. Second, the parameter space in which the exemplars are represented is
assumed to be granularized. Examples whose differences are too fine to show up under the
granularization are encoded as identical (see Kruschke, 1992). For example, the ear cannot
distinguish arbitrarily fine differences in f0. The JND (just noticeable difference) for f0 in
any given part of the range is determined by the resolution of the anatomical and neural
mechanisms which are involved in encoding f0. Thus, it is reasonable to suppose that speech
tokens differing by less than one JND in f0 are stored as if they had identical f0s. Similar
constraints on the resolution of all other perceptual dimensions would motivate granularization
of the phonetic parameter space as a whole. As a result, an individual exemplar – which is
a detailed perceptual memory – does not correspond to a single perceptual experience, but
rather to an equivalence class of perceptual experiences.

This said, it becomes reasonable to propose that each exemplar has an associated strength
– which may be viewed as a resting activation level. The exemplars encoding frequent re-
cent experiences have higher resting activation levels than exemplars encoding infrequent and
temporally remote experiences.

When a new token is encountered, it is classified in exemplar theory according to its sim-
ilarity to the exemplars already stored. Perceptual encoding of the new token locates it in
the relevant parameter space. Its similarity to any single stored exemplar can be computed as
its distance from the exemplar in the parameter space. To classify the new token, the most
probable labelling given the labelling of the exemplars in the neighborhood is computed. The
model implemented here follows the specifics of Lacerda (in press). A fixed size neighborhood
around the new token determines the set of exemplars which influence the classification. The
summed similarities to the exemplars for each label instantiated in that neighborhood is com-
puted, with the similarity to each given exemplar weighted by the strength (or activation) of
that exemplar. Recall that the strength is a function of the number and recency of phonetic
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tokens at that location in the exemplar space.
Figure 1 illustrates the operation of the choice rule for a hypothetical case in which the

labels /I/ and /ε/ are being considered for an unknown vowel token. For the sake of exposition
only, I assume that the only relevant dimension is f2 (the value of the second formant); this is
the x-axis. In a realistic situation, the input would of course have higher dimensionality. The
y axis is the activation level for each of the stored exemplars. Exemplars of /ε/ are shown
with dashed lines towards the left, and exemplars of /I/ with solid lines towards the right, a
consequence of the fact that the vowel /I/ generally exhibits higher f2 than /ε/. However, a few
individual tokens of /ε/ have a higher f2 than a few tokens of /I/. This overlap of the phonetic
distributions for /ε/ and /I/ really does arise in practice, because of dialect differences, speaker
differences, and random variation in production. The unidentified vowel has an f2 which places
it in a region of ambiguity, as shown by the location of the star under the x-axis. The window
in which the comparison is being made is shown by arrows. Within this window, there are
seven exemplars of /I/, of which six are highly activated. There are only two (less activated)
exemplars of /ε/. Hence, the winning label is /I/. The equation specifying this classification
rule is given in the appendix.

In other approaches (e.g. Kruschke, 1992), all exemplars with all labels contribute to the
classification, but an exponentially decaying weighting by distance has the result that the
exemplars nearest to the stimulus dominate the calculation. As a result, the overall behavior
of the model is substantially similar to that of the model reported here. We note also that
attentional weights may be imposed to model how different contexts, expectations, and task
requirements influence classification; however these effects are not at issue in the present paper.

Note that the labelling depends on the relationship amongst the exemplar clouds in the
neighborhood; the winning label is the one which is overall more probable than the competitors.
A label which has more numerous or more activated exemplars in the neighborhood of the new
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token has an advantage in the competition. Given that high frequency labels are associated
with more numerous exemplars (whose resting activations are, on the average, higher), they
will have more dense and more activated exemplar clouds. In situations involving ambiguity,
the model thus predicts a bias towards a high-frequency label. This prediction is supported
by the experimental literature.

The classification rules just discussed have no temporal scale, summarizing only the end
result of the decision process. Of course this does not mean that the brain has for each per-
ceptual classification process a separate little pocket calculator, which it employs to compute
the values of the relevant formuli over the relevant exemplar clouds. Instead, the decision rules
may be viewed as representing synoptically the behavior of an activation/inhibition system.
The sums of the exemplar strengths represent the fact that exemplars spread activation to
labels, so that the activation of any given label is a cumulative function of the number and
activation level of the exemplars associated with it. The comparison amongst the scores for
different labels reflects the results of reciprocal inhibition amongst labels, with the winning
label being the one which succeeds in suppressing the activation of its competitors. The model
is consistent with the standard assumption that reaction times for phonological and lexical
decisions reflect the time required for activation to build up and cross a decision threshhold.
Thus, the model is consistent with, and can even serve to elucidate, results on the speed of
phonological and lexical decisions.

To summarize, the exemplar approach associates with each category of the system a cloud
of detailed perceptual memories. The memories are granularized as a function of the acuity
of the perceptual system (and possibly as a function of additional factors). Frequency is not
overtly encoded in the model. Instead, it is intrinsic to the cognitive representations for the
categories. More frequent categories have more exemplars and more highly activated exemplars
than less frequent categories.

Let us now review the most obvious successes of this approach, as it applies to speech,
before passing on to extensions of the model.

Exemplar theory provides us with a way to formalize the detailed phonetic knowledge that
native speakers have about the categories of their language. Since exemplar theory stores
directly the distribution of phonetic parameter values associated with each label, it provides
us with a picture of the ”implicit phonetic knowledge of the speaker”. The acquisition of this
knowledge can be understood simply in terms of the acquisition of a large number of memory
traces of experiences. There is no competing model which achieves the same level of descriptive
adequacy. Notably, the assumption that there exists a universal symbolic alphabet which
provides an interface to a universal sensori-motor phonetic implementation component (as in
Chomsky and Halle, 1968; Chomsky and Lasnik, 1995) provides no means of representing the
extremely fine differences across languages in values and probability distributions of phonetic
properties. Therefore, it yields no insight into how the knowledge of such details might be
acquired.

Another obvious success of the model is its treatment of prototype effects, handling with
a single mechanism two major findings. One is the finding that a new token which is well-
positioned with respect to a category can actually provide a better example of that category
(in being recognized quickly and rated highly) than any actual example of that category that
has been previously experienced. This phenomenon, sometimes taken as an argument for the
abstraction of prototypes, follows from the exemplar model if ”goodness” is interpreted in
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terms of the probability of the winning label (with the probability arising from the relative
score in relation to the scores of competitors). This probability does not necessarily reach a
maximum on a position in the parameter space which is actually occupied by an exemplar; a
position which is centrally positioned in a dense neighborhood of exemplars will receive a very
high probability even if there is no exemplar at that exact point. Thus the abstract prototype
need not be explicitly computed and stored in advance. A second success of the model, as
noted by Lacerda, is its the ability to explain the fact that extreme examples of phonological
categories are sometimes judged to be better than modal examples. For example, as shown in
Johnson, Flemming, and Wright (1993) the perceptually best examples of the corner vowels
/i/ and /u/ have more extreme formant values than typical productions. This outcome follows
from the fact that the probability for a label is influenced both by the activation of exemplars
having that label, and by competition from other labels having exemplars in the same area of
the cognitive map. Increasing the distance of a novel token from all exemplars with competing
labels will thus raise the subjective goodness.

A last strength of exemplar models is that they provide a foundation for modelling fre-
quency effects, since frequency is built in to the very mechanism by which memories of cate-
gories are stored and new examples are classified. It is not necessary to posit special frequency
counters whose cognitive and neural status are dubious. Indeed, exemplar models can be
fleshed out with assumptions about neural encoding so as to capture the main experimental
findings about frequency effects, including an understanding of why frequency affects both the
outcome of decisions and the speed with which decisions are taken.

3 Production

3.1 Model 1

As is evident from the last section, exemplar models were developed to model perceptual data.
Real language use in communication involves both perception and production. In this section,
we undertake an extension of the model in order to handle production. By modelling the
complete perception-production loop using exemplar theory, we will show that facts about the
reflexes of word frequency in production which were discovered by Bybee and Phillips can be
modelled. No other current theoretical approach can handle these facts.

In perception, the encoded phonetic character of an incoming stimulus locates it in the
parameter space. Activation of exemplars in the neighborhood is passed upwards to the labels,
with the most probable label winning in competition with alternatives. Production proceeds in
the opposite direction. Following Levelt (1989) and others, assume that the decision to produce
a given category is realized through activation of that label. The selection of a phonetic target,
given the label, may be modelled as a random selection of an exemplar from the cloud of
exemplars associated with the label. It will not be important here whether the exemplars have
a dual acoustic-motor nature, or whether the motor program is computed on the fly in order to
match the acoustic goals represented by the exemplar. Similarly, we will not attempt to model
the deeper causes which may figure in the choice amongst possible exemplars. Although social
and stylistic factors may select for different parts of the exemplar cloud in different situations,
the aggregate behavior of the system over all situations may be modelled as a repeated random
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sampling from the entire aggregate of exemplars. The likelihood that a particular exemplar
will be selected is proportionate to its strength. Production is taken to be sensitive to strength
in exactly the same way that perceptual classification is. Thus, this first model of production
is a minimal extension of previous work on how exemplars function in perception.

Now, a phonetic target is not necessarily achieved exactly. Even for a speaker who is
merely talking to himself, one may assume random deviations from the phonetic target due to
noise in the motor control and execution. For a community of multiple speakers, there would
be random differences amongst the stored memories of different members of the community.
Thus if a listener hears a speech token produced by a different speaker than himself, that
speech token could be randomly different from the exemplars in his own stored memories. In
sum, new tokens being added to an existing exemplar cloud may be viewed (to a first order
approximation) as a random sampling from that cloud with added noise.

Figure 2 shows the consequences of this simple approach for the evolution of a single
category from a single token to a distribution of exemplars. As in Figure 1, the situation
is simplified to one phonetic dimension for expository purposes. The x-axis of the figure
represents a relevant phonetic parameter, such as second formant value (if we are considering
categories of vowel frontness), or f0 (if we are considering tonal categories). A nominal scale
is indicated. The single token of the category which seeded the cloud is located at x = 1.
That is, the very first speech token which the listener associates with the category label in
question displays a phonetic value of 1, and this value serves as the starting point for the
development of the new category. (We have said nothing about why a listener may posit a
new category, as this question involves functional issues which exceed the scope of the paper).
The production noise is unbiased with a uniform distribution of width 0.2. The y-axis is the
count of memory-weighted count exemplars in each small interval of the phonetic scale. The
e-folding time of a memory is 2000 time steps (e.g the parameter controlling the exponential
decay of memories is 2000 production/perception iterations. See appendix for further details).
Three superimposed curves show the situation after 10,000, 50,000, and 100,000 iterations.
Thus, the figure is essentially like three superimposed histograms, except that the area under
each curve is not normalized to 1.0 as a probability would be. As discussed above, the total
representation of the category is strengthened as more and more memories are stored; temporal
decay of older memories, not normalization, is responsible for the gradual lowering of the peak
in the figure.

Figure 2 is based on the idealization by which every single production is accurately classified
as a member of the category. Note that the variance of the distribution along the phonetic
dimension displayed increases with usage. It is important to model this increase in variance,
since mature categories do display variation. (They do not have spike-like distributions showing
only phonetic properties which correspond exactly to the first token of the category which is
internalized by the listener.) The overall shape approaches a Gaussian distribution as the
number of tokens increases. This limiting behavior arises from the fact that the production-
perception loop is an additive random process.

3.2 Model II: Systematic Bias

Figure 2 showed the case where there is no systematic bias in production. Recent work by Lind-
blom and colleagues on hypo- and hyper- articulation (Lindblom, 1984) argues for systematic
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production biases. The case which will interest us here is hypo-articulation, or the tendency
to undershoot articulatory targets in order to save effort and speed up communication. This
tendency is arguably the cause of leniting historical changes, such as schwa reduction and
/t/-deletion. Of course, in a complete model of historical change it will be necessary to offer
some explanation of why certain languages at certain times begin to permit particular leniting
changes while not permitting others. But given that a historical leniting change is in progress,
its phonetic consequences may be represented as a systematic bias on the production process
in the model we are developing here.

Figure 3 presents results of a calculation identical to Figure 2, except that a systematic
bias has been introduced in the production process. The bias applied is -0.01, or leftwards
along the phonetic scale which serves as the x-axis. This means that each token is produced
slightly lenited compared to the exemplar of the category which has been randomly selected as
a production goal. No matter how lenited the production goal may be, the production is that
little bit more lenited. This is one concrete interpretation of Lindblom’s general observations.
Lindblom is claiming that speakers undershoot targets to the extent possible – e.g. to an extent
that still permits communication. It would not be consistent with Lindblom’s general line of
thought to think that speakers underarticulate to the point that their target words become
unrecoverable. As before, the distributions shown represent the results of 10,000, 50,000 and
100,000 interations of the model. By comparing Figure 3 to Figure 2, we see that a systematic
lenition bias causes the distribution of exemplars to shift. In addition, it causes an increase in
variance, much as a photograph of a moving object shows a blur.

One way to view this figure is diachronically. It shows how the distribution of a category
evolves over time after a leniting historical change is first introduced. The mode of the dis-
tribution gradually moves towards the left (or lenited) end of the phonetic axis. The graph
also has a synchronic interpretation, provided that we add a key assumption – namely, that
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not just phonemes, but individual words, have associated exemplar clouds. For example, we
assume that each of the words bet, bed , and bend has an exemplar cloud, and that the ex-
emplar cloud for the phoneme /ε/ is the union of the /ε/ sections of the exemplar clouds for
these words and for all other words containing an /ε/. With this added assumption, the figure
may be viewed as displaying a synchronic comparison amongst words of different frequencies
which are impacted by the same historical change in progress. Since the high frequency words
are used more often than the low frequency words, their stored exemplar representations show
more numerous impacts of the persistent bias towards lenition. As a result, they are further
to the left on the axis than the low frequency words.

The result displayed in Figure 3 is exactly the result documented by Bybee, Philips, and
others. Some detailed predictions of the model include: 1) Each individual word displays
a certain amount of variability in production. 2) The effect of word frequency on lenition
rates is gradient. 3) The effect of word frequency on lenition rates should be observable
within the speech of individuals; it is not an artifact of averaging data across the different
generations which make up a speech community. 4) The effect of word frequency on lenition
rates should be observable both synchronically (by comparing the pronunciation of words of
different frequency) and diachronically (by examining the evolution of word pronunciations
over the years within each person’s speech.) The exemplar model is the only current model
which has these properties. An additional prediction is that probability distributions for words
undergoing a historical change should be skewed, with the extent of the skew being slight or
great according to the velocity of the change. Even with recent advances in speech processing
technology, it would require an extremely ambitious amount of data analysis to evaluate this
prediction.

Two further observations may be made on the cognitive interpretation of this model. First,
note that speakers immersed in a new speech environment find that their pronunciation pat-
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terns shift over a relatively long time span, of several months or more. (For example, see
the longitudinal phonetic study reported in Sancier and Fowler, 1997). The time span for
historical changes is on the order of decades or more. Thus, the extremely high number of
iterations used in making the calculations in the figures is not unrealistic. Consider, for ex-
ample, a leniting change affecting the vowel in the preposition ”of”. The present paper alone
has over 200 examples of this word, and 10,000 examples would probably occur in less than
one month of speech. Second, it is often noted that historical changes impact the speech of
older people less than younger people, so that a change in progress results in a divergence
between the speech patterns of different generations. The model suggests two possible factors
in this finding. First, older people may have more exemplars than younger ones for the same
pattern, so that the parameter values displayed in older exemplars dominate the production
statistics. This line of explanation depends on the assumption that memories decay slowly. A
second possibility is that older people are less likely to add new exemplars than young ones;
because the formation of new memories becomes less rapid and robust with age, the production
statistics are dominated by exemplars stored at a younger age. Differences in attention or in
feelings of social affiliation could impact formation of exemplar memories in an analogous way.
Both of these lines of explanation predict that the speech patterns of older adults could shift
to some extent, just not as rapidly as for younger people.

3.3 Model III: Entrenchment

Figure 3 has a serious problem which is already foreshadowed in Figure 2. In a model with
production noise, the variance for any given category steadily increases with usage; when there
is a systematic production bias, the velocity the bias imparts to this distribution aggravates
the spread. However, practice is often reported to have the opposite effect of decreasing the
variance, a phenomenon known as ”entrenchment”. For example, a child who takes up the
cello produces highly variable tuning of notes at the beginning, and more and more accurate
tuning over years of practice. The phonetic variability associated with a typical phonological
category decreases gradually up through late childhood (Lee et al. 1999). The bare exemplar
model provides no way to model entrenchment. There is no combination of parameter settings
for the model which allows a category to fill out after being seeded by a single example, without
simultaneously predicting that the spreading out will go on indefinitely.

The model must be further elaborated in order to model entrenchment effects. The model
of entrenchment for which we present calculations is broadly inspired by work by Rosenbaum
et al. (1993) on reaching movements. The understanding of production is modified so that
production does not depend only on a single target exemplar (selected at random). Instead, a
target location in the exemplar cloud is selected at random, and the exemplars in the neigh-
borhood of this location all contribute to the production plan, to a degree which reflects their
activation level. The neural interpretation of this proposal is that a region in the brain, not
merely a single point, is activated when planning a production. Activation-weighted averaging
over a group of exemplars results in entrenchment, because averaging mathematically causes
reversion towards the mean of a distribution.

Calculations of a leniting change in progress which include this treatment of entrenchment
are displayed in Figure 4. A neighborhood of 500 exemplars is used in calculating the dis-
tributions displayed in this figure. A comparison of Figure 3 and Figure 4 shows that the
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entrenchment narrows the distributions, so that the distribution width for the case of 100,000
iterations is roughly comparable to that for 10,000 iterations. With the particular parameter
settings selected here, the spreading effects arising from production noise and lenition and the
anti-diffusive effect of entrenchment have essentially cancelled out in determining the variance.
If a larger neighborhood were used in the treatment of entrenchment, then the high count case
would have less variance. In a situation involving high production noise or a high degree of
systematic bias, the high count case would display more variance than the low count case.

The issue of entrenchment is a complicated one, and the treatment we have presented is only
one of many possible ones. The Hintzman/Goldinger model proposes an entrenchment effect
on the perception side rather than the production side; when any given stimulus is classified,
it sets up an ”echo” which reflects not only its own properties but also the properties of the
exemplars in the stimulus neighborhood which contributed to the classification. The echo
is what is stored in memory, not the stimulus itself. Since the echo combines information
over a neighborhood, it shows reversion towards the mean just as our production model does.
The type of data we are considering here – patterns of historical change – involve the entire
perception-production loop and they do not tell us whether entrenchment occurs in perception,
in production, or in both.

In the Hintzman/Goldinger model, the neighborhood which influences the echo of a stimulus
has a fixed size on the exemplar map. This means that there are few influences on the echo
if the neighborhood of the stimulus is sparsely populated. In the production model presented
here, the neighborhood contains a fixed number of exemplars; it expands its size in regions
which are sparsely populated. The Hintzman/Goldinger treatment has the result that more
episodic information is encoded in memory for rare events than for frequent ones; for example,
one is more likely to remember that a word was spoken in a particular voice if the word is
rare than if it is common. However, we were unable to make a fixed neighborhood work out
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in the production model since it creates too much instability in the exemplar dynamics at
the beginning of the calculation when there are very few examples of a category. This is why
an n-nearest-neighbors model is offered here. An integrated model which handles all known
neighborhood effects simultaneously remains to be developed.

A third issue is whether entrenchment critically involves feedback from other levels, and
if so, what kind of feedback. Notice that self-organizing systems can in principle form and
sharpen peaky distributions without any type of feedback at all, much as the lumpiness in
the energy distribution after the Big Bang eventually evolved into the universe we know with
concentrated physical objects, such as galaxies and viruses. All that is needed is some type of
anti-diffusive factor, such as gravity, which causes unevenness in the parameter distributions
to become exagerated. Equally, however, people sharpen categories faster and to a greater
degree if they receive feedback, particularly if the feedback provides functionally important
rewards or penalties. Speech patterns appear to fall into an intermediate situation, in that
people adapt their speech patterns to their speech community even without overt pressures
and rewards, but that communicative success and social attunement provide implicit feedback
which is certainly important. The model presented here does have feedback, in that it has
an informational loop between the stimulus encoding and the abstract level of representation
represented by the labelling. If an incoming stimulus is so ambiguous that it can’t be labelled,
then it is ignored rather than stored. That is, the exemplar cloud is only updated when
the communication was successful to the extent that the speech signal was analyzable (As
in real life, there is no guarantee that the listener’s analysis is the speaker’s, however.) In
addition, the model automatically generates social accommodation of speech patterns, since
speech patterns which are heard recently and frequently dominate the set of exemplars for any
given label, and therefore guide the typical productions. This effect arises from the feedback
loop from production to classification to production which is set up by the ”speech chain”
of conversational interaction. To model the more specific feedback effects which occur in
different social contexts, it is necessary to introduce attentional weighting as a further factor.
For example, if a child emulates the speech patterns of a particularly admired role model, this
would be modelled by weighting of the exemplars in that particular voice. This weighting
represents the net positive effect of feedback from the other levels of representation involved
in the child’s understanding of his social situation.

4 Neutralization

In the calculations presented so far, it has been assumed that every single production of a
label is accurately classified as an example of that category. Under this assumption, a leniting
change causes an unbounded drift in the phonetic distribution for each word exemplifying
a category. In fact, however, historical changes have natural completion states. When the
change is complete, the new situation is stable.

To model this situation, we need to look at two labels which are competing over a phonetic
parameter range. We consider the case of a marked phonological category competing with
an unmarked one. Following Greenberg and others, we take the unmarked category to be
more frequent than the marked one (see papers in Greenberg et al. 1978). In the calculation
presented, the unmarked category is three times as frequent as the marked one. The marked
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category is also the phonetically unstable one which is subject to a persistent bias. The
unmarked one is assumed to be phonetically stable. An example of this situation would be
the collapse of a phrase-final voicing contrast. Phrase-final voiced obstruents are typically
less frequent than voiceless ones. Lack of articulatory effort results in poor voicing in final
position, e.g in tokens which are subject to being misperceived as voiceless. Historically, voiced
and voiceless obstruents are reported to collapse to the unvoiced category in this position.

In Figure 5, the right hand distribution represents the marked category which is subject
to a persistent leftwards bias. The left hand distributrion is a stable unmarked distribution
competing for labelling of the same phonetic parameter. The successive panels represent four
time slices in the evolution of the situation. Because the marked distribution is subject to
a persistent bias, it drifts to the left. When it approaches the unmarked distribution, some
individual tokens which were intended as examples of the marked case are perceived and
stored as examples of the unmarked case. This happens more often than the reverse. Insofar
as it does happen, the disproportion in frequency between the two categories increases. In
the end, the marked category is completely gobbled up by the unmarked one. Note that the
distribution of the unmarked category does show some influence of the marked category it
absorbed. Although the location of the distribution is still closer to the original location of
the unmarked category than that of the marked category, the mode of the distribution is a
bit to the right from where it was. This is not necessarily unrealistic. One could imagine a
situation in which the distinction between final voiceless aspirated stops and final voiced stops
is neutralized to final voiceless unaspirated stops. To evaluate this general type of prediction,
detailed statistical distributions of parameter values for changes in progress will need to be
collected. Modelling such distributions will require serious consideration of the relationship
between the phonetic scales which are readily susceptible to measurement and the scale of
effort on which the persistent leniting bias is presumed to be defined. The physics of speech
production exhibits many nonlinearities, including ceiling and floor effects, and these will shape
the assymptotic behavior of the system in a way which circumscribes the possibilities for stable
outcomes.

5 Conclusion

In conclusion, exemplar dynamics provides an incisive model of the main findings of usage-
based phonology. The assumption that people learn phonological categories by remembering
many labelled tokens of these categories explains the ability to learn fine phonetic patterns
of a language. It also explains why patterns are incrementally modified over long periods
of time in adult speech, and why leniting historical changes are typically more advanced for
high-frequency words than for low frequency words. A realistic treatment of the neutralization
which results when a marked category collides with an unmarked category is also provided.

Model calculations using exemplar theory yield a number of predictions whose validation
provides an area for future research. Documentation of the variance as well as the means
of phonetic distributions is critical to a full understanding of entrenchment. Similarly, the
documentation of mergers-in-progress is also signalled as an important topic.
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Appendix: Model Description

The fundamental entity in our model is the exemplar list E(L), which consists of the list
of exemplars {eL

1 , ..., eL
n} associated with label L. To decide which label to assign to a new

utterance with phonetic characteristic x, we define a score for each label by the equation

score(L, x) =
∑

i=1...n

W (x − eL
i )exp(−t − Ti

τ
) (1)

where W is a window function, t is the current time, Ti is the time at which the ith exemplar
was admitted to the list, and τ is the memory decay time. Currently we are using a square
window function, with W = 1 if its argument has absolute value below .05, and W = 0
otherwise. If, for example there are two labels A and B in contention, we compute score(A, x)
and score(B, x) and assign x to the label with the greatest score. In the case of a tie, the
utterance is discarded. In the case of the successful classification, x is put at the head of the
exemplar list corresponding to its label.

The exemplar list is also used in the production step. First a production target xtarget

is obtained by picking an exemplar randomly from the exemplar list of the desired label. In
picking an exemplar, we assign each exemplar a probability which decays according to its age,
specifically exp(−(t−Ti)/τ). This implements memory decay in the production process, as old
exemplars are only rarely used. Without entrenchment, the token produced is then obtained
by adding a performance noise and a lenition bias to the target Thus

x = xtarget + ε + λ (2)

where ε is a random number chosen from a uniform distribution ranging from −.1 to .1 and
λ is a constant lenition bias. In the one-peak cases shown in Figure 3 and Figure 4, we used
λ = −.01. In the neutralization case shown in Figure 5, we used λ = −.1 for the (infrequent)
leniting peak. Note that the noise and the lenition bias is applied once per utterance, so that
infrequent utterances evolve on a slower time base. An additional effect, however, is that if
the memory time τ is held fixed for all labels, infrequent labels access an effectively smaller
portion of the exemplar list in production and classification, owing to a greater impact of
memory decay. In all calculations reported above, we used a fixed memory time τ = 2000 for
both production and classification.

To implement entrenchment, the production target was modified as follows, prior to addi-
tion of noise and bias. We picked the ntrench closest exemplars to the trial xtarget, using the
memory-weighted distance

di = |xtarget − eL
i |exp(

t − Ti

τ
) (3)

and then formed a new target by taking the memory-weighted mean of the ntrench values. In
the limit of very large ntrench, the production target becomes fixed at the memory weighted
mean of the exemplar list. The simulations reported above were carried out with ntrench = 500

In the case of a single label, the production-iteration loop proceeds as follows. First, we
seed the examplar list with a single value. Subsequently, we alternate between producing a
new token according the protocol described above, and adding the new token to the exemplar
list provided its score is nonzero. In the case of two labels A and B, we seed each exemplar list
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with a single value, then randomly produce a token x of A or B with probability p and 1 − p
respectively, compute score(A, x) and score(B, x) and finally append x to the exemplar list of
the higher scoring label. This procedure generalizes in the obvious way to arbitrary numbers
of labels.
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