
Representing Control in the Presence of First-Class Continuations ∗

Robert Hieb, R. Kent Dybvig, Carl Bruggeman
Indiana University

Computer Science Department
Lindley Hall 101

Bloomington IN 47405

Abstract

Languages such as Scheme and Smalltalk that provide
continuations as first-class data objects present a chal-
lenge to efficient implementation. Allocating activation
records in a heap has proven unsatisfactory because of
increased frame linkage costs, increased garbage collec-
tion overhead, and decreased locality of reference. How-
ever, simply allocating activation records on a stack and
copying them when a continuation is created results in
unbounded copying overhead. This paper describes a
new approach based on stack allocation that does not
require the stack to be copied when a continuation is
created and that allows us to place a small upper bound
on the amount copied when a continuation is reinstated.
This new approach is faster than the naive stack alloca-
tion approach, and it does not suffer from the problems
associated with unbounded copying. For continuation-
intensive programs, our approach is at worst a constant
factor slower than the heap allocation approach, and
for typical programs, it is significantly faster. An im-
portant additional benefit is that recovery from stack
overflow is handled gracefully and efficiently.

1 Introduction

Stacks have traditionally been used to implement both
activation records and local environments in languages
that support recursive procedure calls [5]. Stacks al-
low rapid allocation and deallocation of call frames and

∗This material is based on work supported in part by the
National Science Foundation under grant number CCR-8803432.

Proceedings of the SIGPLAN ’90 Conference on Programming
Language Design and Implementation, 66–77, June 1990. Copy-
right c© 1990 ACM.

efficient linkage on calls and returns. On modern ar-
chitectures with hierarchical memory, stacks also help
maintain locality of memory operations.

Traditional stack management techniques are inad-
equate for some modern languages, however. If a lan-
guage is to allow arbitrarily deep recursion, some means
for detecting and recovering from stack overflow is nec-
essary. Since multiple control threads in the same ad-
dress space require multiple control stacks, it must be
possible to scatter stacks throughout memory and each
must occupy a bounded amount of space. Further com-
plications result when a language provides a means for
capturing, storing and reinstating control stacks, such
as Scheme’s first-class continuations [14] and Smalltalk’s
context objects [9].

The need to support continuations or contexts as ob-
jects with indefinite extent precludes the use of a simple
stack-based implementation of call frames. A continua-
tion represents the rest of the computation from a given
point. Since the “rest of the computation” is determined
by the current chain of activation records, when a con-
tinuation is captured, the current chain of activation
records must be preserved, and when a continuation is
reinstated, the current chain of activation records must
be replaced with a previously captured chain so that
the computation can continue from the point at which
the continuation was captured. Since the same contin-
uation may be reinstated more than once, reinstating a
continuation cannot be accomplished by simply switch-
ing control back to the old stack area, since this would
overwrite the saved activation records.

Stack overflow has traditionally been handled by lo-
cating the stack in an area of memory that can be ex-
tended indefinitely. A standard approach is to locate
the heap at one end of memory and the stack at the
other end of memory, and let them grow toward each
other. Often, the memory management system can then
be used to trap stack overflow. However, multiple exe-
cution threads require multiple stacks; such stacks can-
not be easily extended if overflow occurs, and it may

1



not be possible to use the memory system to trap stack
overflow. Simply restricting the size of the stack area
for a given control thread, either automatically or by
programmer control, is unsatisfactory in languages that
support and encourage the use of recursive programs.
Since stack overflow and underflow can be thought of
as continuation capture and reinstatement, it is not sur-
prising that a method that allows efficient continuation
operations also provides the means for handling stack
overflow and underflow efficiently.

The simplest way to allow continuation operations
and multiple control threads, and at the same time
avoid stack overflow problems, is to allocate activation
records as a linked list in the heap. Such an approach
has the virtue of simplicity, but the price is increased
allocation and more expensive linkage at procedure call
and return. In this paper we show how stacks can be
used to implement activation records in a way that is
compatible with continuation operations, multiple con-
trol threads, and deep recursion. Our approach allows
a small upper bound to be placed on the cost of con-
tinuation operations and stack overflow and underflow
recovery. Since we do so while retaining the benefits of
traditional stack management, ordinary procedure calls
and returns are not adversely affected. Although the
cost of continuation operations is greater than it would
be in a heap model, the increased cost is defrayed by the
less expensive procedure call interface. One important
feature of our method is that the stack is not copied
when a continuation is captured. Consequently, captur-
ing a continuation is very efficient, and objects that are
known to have dynamic extent can be stack-allocated
and modified since they remain in the locations in which
they were originally allocated. By copying only a small
portion of the stack when a continuation is reinstated,
reinstatement costs are bounded by a small constant.

In the next section we provide some background for
our work. We discuss the use and importance of first
class continuations and review other methods for im-
plementing them. In Section 3 we describe our stack
model. In Section 4 we use this model to develop tech-
niques for continuation capture and restoration. In Sec-
tion 5 we show how these techniques can be used to
handle stack overflow and underflow, and we present
an efficient method for detecting stack overflow in the
absence of hardware and operating system support.

2 Background

We have used our stack management techniques for im-
plementing Scheme on several machines and operating
systems. Scheme is a good test bed for these techniques
because it relies heavily on procedure calls and provides
access to continuations as first-class objects. In fact,

conditionals, procedure calls, and continuations are the
only control operations provided by Scheme. Looping is
accomplished by tail-recursive procedure calls, and sup-
port for exception handling and “gotos” is provided by
continuations.

Continuations in Scheme are procedure objects that
represent the remainder of a computation from a given
point in the computation. The procedure call-with-
current-continuation, commonly abbreviated call/cc, al-
lows a program to obtain the current continuation.
When given a procedure of one argument, call/cc cre-
ates a continuation procedure and passes it to the ar-
gument procedure. The procedure created by call/cc
represents the continuation of the call to call/cc.

When the continuation procedure is invoked, it re-
turns its argument to the continuation of the call to
call/cc that created it. In essence, the argument passed
to the continuation procedure is returned as the re-
sult of the call to call/cc. If control has not otherwise
passed out of the call to call/cc, invoking the continua-
tion merely results in a nonlocal exit. If control has al-
ready passed out of the call to call/cc, the continuation
may still be invoked, but the result is to restart the com-
putation at a point from which the system has already
returned. This feature may be used to implement many
interesting control structures, including loops, nonblind
backtracking [16], coroutines [8], and engines [10, 7].

The continuation of a procedure call is nothing more
than the control stack of procedure activation records.
If continuations were used only for nonlocal exits, as in
Common Lisp [15], then the essence of a continuation
object would be a pointer into the control stack. How-
ever, because continuations can outlive the context of
their capture, continuation objects have indefinite ex-
tent and a pointer into the stack is not sufficient. If
control passes out of the context where the continua-
tion was created, the stack may be overwritten by other
procedure activation records, and the information re-
quired to return to the continuation will be lost.

The simplest way to support continuation operations
is to abandon the use of a reusable stack to store acti-
vation records and to maintain activation records as a
linked list in the heap (see Figure 1). In this model, pre-
vious activation records are never overwritten; instead,
a new activation record is allocated for each call. On
return, the activation record is not automatically deallo-
cated, since if a continuation has been captured it may
be needed later. Instead, a storage manager reclaims
the record when it is no longer reachable. The chief ad-
vantage of this approach is that the capture and invoca-
tion of a continuation is quick and easy. A continuation
may be captured or reinstated for little more than the
cost of an ordinary procedure call. Also, there is no

2



Current Continuation

Figure 1. The heap model provides the simplest method for supporting constant-time continuation
operations. An activation record is allocated in the heap and linked to the current activation record
before a call is made. The called procedure uses the link to restore the old frame pointer before returning.
Continuation operations involve saving or restoring a pointer to the current frame.

need for a separate stack overflow detection and recov-
ery mechanism; stack overflow is simply a special case of
heap overflow. Multiple control threads are also easily
accommodated. The disadvantage is that ordinary pro-
cedure calls may be slowed down by the increased over-
head caused by allocating the activation records in the
heap and by more complicated activation record link-
ages. Furthermore, the storage manager must do more
work to reclaim abandoned activation records.

Appel [1] points out that heap allocation and the as-
sociated cost of garbage collection can be made compet-
itive with stack allocation by using large physical mem-
ories. The argument is based on the fact that a copying
collector takes time proportional to the amount of re-
tained data rather than discarded data. Thus, if mem-
ory is sufficiently large in comparison to the amount of
retained data, the cost of garbage collection becomes
insignificant. In fact, assuming that each stack frame
must be explicitly deallocated (popped), the overall cost
of heap allocation operations can actually be made less
than that of stack allocation operations. Unfortunately,
this argument may not apply to all memory systems,
since it assumes that arbitrarily large amounts of mem-
ory can be used without penalty, whereas hierarchical
memory systems that use caches and virtual memory
penalize programs that use large amounts of memory
without a high degree of locality.

Since in the heap model frames are not contiguous in
memory, the frame pointer must be saved and restored
on each call, resulting in an extra memory write and

read for each recursive call. The stack model (see Fig-
ure 2), on the other hand, can combine frame allocation,
deallocation and linkage by adjusting the frame pointer
by a small constant on procedure call and return. Also,
since the heap model must assume that a frame may
be captured as part of a continuation, the frame cannot
be reused or modified. With the stack model, on the
other hand, portions of a frame may be reused for local
storage or subordinate calls.

In order to preserve the benefits of stack management
of activation records, some implementors have used a
copy strategy. The copy strategy uses ordinary stack
management techniques until a continuation is captured
or invoked. When a continuation is captured, the stack
is copied into the heap and a pointer to the heap copy
is stored in a continuation structure. When a continu-
ation is invoked, the stack image in the heap is copied
into the stack area, where it is treated as an ordinary
stack of activation records. The first reference we have
found to this approach is by McDermott [12], who sug-
gests copying continuations to and from a control stack
so that only programs that actually use first class con-
tinuations need pay for the cost of supporting them.

Unless continuation operations are relatively rare or
the size of the stack is usually quite small, the cost of
copying stack images makes continuation operations in-
ordinately expensive. It is possible to construct pro-
grams that cause the naive copy model to behave very
poorly, since the cost of a continuation operation is pro-
portional to the size of the stack. Furthermore, since
many copies of an arbitrarily large continuation may be

3



fp

Stack

Control

base

Top Frame

Figure 2. The traditional stack model provides the least expensive frame linkage. Since frames are
physically adjacent, frame links can be maintained by simple register adjustments. However, since con-
tinuation operations require time proportional to the size of the active portion of the stack, the amount
of time required is effectively unbounded.

retained if the same continuation is captured and saved
repeatedly, a large amount of memory may be wasted,
resulting in much worse memory usage than the sup-
posedly memory-intensive heap model.

Since allocation and reclamation on a stack is inex-
pensive, objects that are known to have dynamic extent,
that is, do not survive the call frame in which they are
allocated, are often allocated on the stack as part of the
call frame. However, under the copy model this sort of
stack allocation is not likely to be useful. It is not pos-
sible, in general, to retain pointers to such objects or to
modify their contents, because the stack in which they
are allocated may be moved out of the stack area and
into the heap, perhaps more than once.

Much recent work has been devoted to developing
techniques that allow the stack model to be used with-
out making the use of continuations too expensive. For
instance, Bartley and Jenson [2] “optimistically” stack-
allocate control frames, but temper their optimism by
using a stack cache of limited size. This places a
bound on the worst-case costs of continuation capture
and reinstatement, since a bounded amount of mem-
ory is copied. Since all but the top frame of the stack
cache can be copied into the heap on stack overflow—
essentially forcing a continuation capture—deep recur-
sion is still possible. However, there is a direct relation-
ship between the bound on the cost of continuation op-
erations and the bound on the depth of recursion with-
out stack overflows. Since handling stack overflow and
underflow is expensive compared with the cost of or-
dinary procedure calls, a small stack size can lead to
a substantial decrease in the performance of recursive
programs. In the worst case, a “bouncing” phenomenon

may occur. If a program makes just enough recursive
calls to place the stack on the verge of overflow and
then enters a loop that causes the stack to repeatedly
overflow and underflow, the worst-case cost of recursive
procedure calls can become the average-case cost, mak-
ing calls as expensive as continuation operations.

Our method for representing control threads also lim-
its the amount of memory copied by continuation opera-
tions without requiring the small stack size that results
in increased overflow and underflow overhead for pro-
grams that do not use continuations.

3 The Control Stack

In our model, the control stack is represented as a linked
list of stack segments (see Figure 3). Each stack seg-
ment is structured as a true stack of frames (activation
records), with one frame for each procedure call. A stack
record associated with each stack segment contains in-
formation about the stack segment, including:

1. a pointer to the base of the stack segment,

2. a pointer to the next stack record,

3. the size of the stack segment, and

4. the return address for the topmost frame.

Each frame consists of a sequence of machine words.
The first word at the base of the frame is the return
address of the current active procedure. The next n
words contain the n actual parameters of the procedure,
or pointers to cells in the heap containing the actual

4



base

N1

Segment
Stack

Current

Segment

Stack

N1

record
stack
current

N2 RA

fp return address

argument 1

local value 1

local value M

argument N

N2

Top Frame

Previous

Figure 3. The segmented stack model is a simple generalization of the traditional stack model. By
implementing the control stack as a linked list of stack segments, continuation operations are bounded
by the size of the top segment instead of the size of the entire control stack.

parameters if the parameters are assignable [6, 13]. (It
is also possible to pass the return address and the first
few arguments in registers, leaving a hole in the frame
in which the return address can be placed if the called
routine itself makes a recursive call.) The remaining
words in the frame contain the values of local variables,
compiler temporaries, and partial frames for procedure
calls initiated but not yet completed. A frame pointer
register, fp, points to the base of the current frame,
which is always in the topmost stack segment.

No separate stack pointer is maintained to point to
the topmost word on the stack, so there is often a gap
between the frame pointer and the topmost word. This
does not create any difficulties as long as this stack is
not used for any other purpose (such as asynchronous
interrupt handling). Using a frame pointer instead of a
stack pointer simplifies argument and local variable ac-
cess and eliminates register increments and decrements
used to support stack “push” and “pop” operations.
This savings is more important on architectures, such as
RISC architectures, that do not support auto-increment
and auto-decrement addressing modes.

No explicit links are formed between frames on the
stack. Many compilers place the current frame pointer
into each stack frame before adjusting the frame pointer
to point to the new frame. This saved pointer, or dy-
namic link , is used by the called routine to reset the

frame pointer and by various tools, e.g., exception han-
dlers and debuggers, to “walk” the stack. In our model,
the frame pointer is adjusted just prior to a procedure
call to point to the new frame, and is adjusted after the
called routine returns to point back to the old frame. In
order for this to work, the frame pointer must still (or
again) point to the called routine’s frame on return. The
compiler generating code for the calling procedure must
keep track of the displacement between the start of the
calling procedure’s frame and the start of the called pro-
cedure’s frame in order to adjust the frame pointer both
before and after the call. In both cases, the adjustment
is performed by a single instruction to add (subtract)
the displacement to (from) the frame pointer.

Exception handlers, debuggers, and other tools that
need to walk through the frames on the stack must have
some way to get from each frame to the preceding frame.
Our continuation mechanism also requires this ability
in order to find an appropriate place at which to split
the stack (see Section 4). In the place of an explicit
dynamic link, the compiler places a word in the code
stream that contains the size of the frame. This word
is placed immediately before the return point so stack
walkers can use the return address to find the size of the
next stack frame (see Figure 4). If the return address
itself is always placed in a known frame location, the
frame size effectively gives the offset from the return

5



base

Segment
Stack

Code

fs1

fs2

instr

instr

fs0
instr

N

N

RA2

RA1

fs0

fs1

top
frame

next
frame

Figure 4. Walking backwards through a stack segment is straightforward. The return address field of a
continuation stack record points to an instruction in the code stream, which is preceded by a data word
containing the frame size. This frame size is used to to find the base of the top frame, where its return
address is stored. This return address is used to find the frame size of the next frame down, which is
used to find the next return address, etc.

address of the current frame to the return address of
the preceding frame. For Scheme, it is useful to have
the return address stored at the base of the frame so
that it need not be moved for tail recursive calls.

Assuming that the compiler always generates an in-
struction to reset the frame pointer immediately at the
point of return, the stack walker could disassemble this
instruction to determine the frame size and we could
thereby avoid storing the frame size explicitly in the
code stream. This would, however, complicate the stack
walker and unnecessarily constrain the compiler, which
would otherwise be able to move the frame pointer di-
rectly to the base of the frame for the next procedure
call in many cases. The constraint that the return ad-
dress be placed at a constant offset in the frame can
also be relaxed by storing the actual offset in the code
stream along with the frame size.

4 Continuation Operations

When the system is initialized, a large stack segment
and an associated stack record are created. The ini-
tial stack segment is large for two reasons: first, so
that stack overflow for deeply recursive programs is
less likely, and second, because continuation captures
shorten the stack. Each time a continuation is captured

(see Figure 5), the occupied portion of the current stack
segment is sealed and the current stack record is con-
verted into a continuation object by adjusting the size
field and storing the current return address in the re-
turn address field. The return address in the current
frame is replaced by the address of an underflow han-
dler (see below). A new stack record is allocated to
serve as the current stack record. Its base is the ad-
dress of the next word above the occupied portion of
the old stack segment, its link is the address of the old
stack record (the continuation), and its size is the num-
ber of words remaining in the old stack segment. The
stack is thus shortened each time a continuation is cap-
tured. Creating a continuation, therefore, does not en-
tail copying the stack, but it does shorten the current
stack object, which eventually results in stack overflow
and the allocation of a new stack object (see Section 5).
If a continuation were captured before each recursive
procedure call, each saved stack segment would contain
exactly one frame, and the resulting list of continuation
objects would be essentially equivalent to a heap-based
control stack.

If the current stack segment is empty when a con-
tinuation is captured, no changes are made to the cur-
rent stack record and the link field of the current stack

6



Before Capture

N1

Segment

Current
Stack

record
stack
current

Segment

Current
Stack

record
stack
current

After Capture

N2 RA

N3

underflow

underflowfp

N1

underflow

fp RA

N3

N2

N1

captured
continuation

Figure 5. Capturing a continuation is a constant-time operation with the segmented stack model. The
current stack segment is divided into two segments at the top frame. The bottom segment is the stack
segment for the captured continuation, and the top segment becomes the current stack segment.

record serves as the new continuation. This is neces-
sary to implement tail recursion properly, i.e., so that
no growth in the control stack occurs when continua-
tions are created repeatedly in a tail-recursive situation.
For instance, the following Scheme function should loop
indefinitely since it calls itself tail-recursively:

(define looper
(lambda ()

(call/cc
(lambda (k )

(looper )))))

If a new link were added to the control stack at each
iteration of looper because of the call to call/cc, the
control stack would grow progressively longer and the
program would eventually run out of memory.

Reinstating a continuation is more complex (see Fig-
ure 6). In the simplest case, the current stack segment
is overwritten with the stack segment from the continu-
ation, and the frame pointer is adjusted to point to the
top frame of the copied segment. If the current stack
segment is not large enough a new one is allocated.

Unfortunately, the size of a saved stack segment is
bounded only by the size of the initial stack segment.

Since stack segments are allocated in large chunks to re-
duce the frequency of stack overflows, if the whole seg-
ment were copied at once, the cost of continuation rein-
statement would be bounded only by this large amount.
This can be prevented by placing an upper bound on the
amount copied. If the size of a saved stack segment is
less than or equal to this bound, the entire segment is
copied. Otherwise, the segment is first split into two
segments such that the size of top stack segment is less
than the copy bound. Although it would be sufficient
to split off a single frame, it is more efficient to split off
as much as possible without exceeding the bound be-
cause of the overhead of splitting the continuation and
initiating the copy. An appropriate bound for a given
machine can be determined only by experimentation.

Finding an appropriate splitting point entails walking
backwards through the continuation stack segment (see
Figure 4) until adding another frame would exceed the
copy bound. The stack segment is then split in much the
same way the stack is split when a continuation is cap-
tured (see Figure 7). The base and link pointers from
the continuation stack record and the return address
from the frame above the splitting point are stored in a
newly allocated stack record. The size field of the new

7



N

Current Continuation

N

Current Continuation

N

fp

N

fp

M

New Continuation

RA

M

top
frame

M

M

New Continuation

RA

top
frame

top
frame

Before Reinstatement After Reinstatement

Figure 6. When a continuation is reinstated, the contents of the stack segment of the continuation is
copied into the current stack segment. If the size of the stack segment is greater than a predetermined
limit, the segment is first split into two segments (see Figure 7). If the current stack segment is not large
enough to hold the contents of the reinstated stack segment, a new stack segment is allocated.

stack record is set to the size of the stack segment be-
low the splitting point. The new stack record becomes
the stack link for the old stack record. The old stack
record’s base pointer is set to the splitting point and its
size field is set to the size of the stack segment above
the splitting point. The return address in the frame is
replaced with the address of the underflow handler.

Since at least one frame must be copied when a con-
tinuation is reinstated, if the amount of copying is to be
bounded the size of a frame must be also bounded. This
bound can be the same as the bound used in splitting
continuations, but in practice it is reasonable to make
it larger if frames larger than the optimum splitting
size are not unusual. The frame bound then determines
the worst-case cost and the copy bound determines the
average-case cost of continuation invocations. In order
to maintain a bound on frame size, the number of ar-
guments to a procedure and the amount of storage nec-
essary for local bindings and intermediate results must
be limited. Extra arguments can be passed in a aux-
iliary data structure and the number of local bindings
can be limited by converting local binding blocks into

unnamed procedures. Intermediate results for pending
calls and other operations can be stored in a linked list
in the heap. In practice, with a reasonably large frame
bound, these conversions are rarely necessary.

It is necessary to do something special when a return
is attempted from a call frame that is at the bottom
of a stack segment. The initial stack segment has as
its return address at the base of the segment the ad-
dress of a routine that exits to the operating system.
All other segments have the address of the underflow
handler stored at the base of the segment. The under-
flow handler simply reinstates the continuation in the
link field of the current stack record.

5 Stack Overflow

When the heap model of continuation allocation is used,
the depth of recursion is limited only by the amount of
available heap memory. However, with a stack-based
implementation of the control stack, some method for

8



RA

M

M

M

M1

M2

M2

M1

underflow

RA

underflow

underflow

Before Spliting After Spliting

Figure 7. Large stack segments must be split before being reinstated. A splitting point is found by
walking the stack to find the frame that gives the largest value for M1 without exceeding the predeter-
mined limit on copying. The return address at the splitting point is stored in a new stack record and the
address of an underflow handler is stored in its place.

stack overflow detection and recovery is necessary to al-
low indefinite depth of recursion. If stack overflow can
be detected while the system is in a known state, over-
flow can be treated as an implicit continuation capture.

Unfortunately, detecting stack overflow inexpensively
is not a simple matter, particularly if the goal is a
portable implementation model. Furthermore, detect-
ing overflow is only part of the problem, since the state
of the system at the time of overflow must be known
completely so that the computation can be continued
after a new stack area is allocated and linked to the
continuation containing the previous area.

On some architectures, stack overflow detection can
be made virtually cost-free with the help of the memory
management system. The stack can be located adja-
cent to an area of memory that is not writable and an
exception generated when the stack attempts to grow
into the unwritable area. Such an approach is espe-
cially compatible with the copy-in, copy-out model of
continuation management, since one can permanently
place the stack cache next to a suitable region of mem-
ory. However, our model requires that new stack areas
be allocated on demand, so it is essential that the hard-
ware and operating system allow areas of memory to be
selectively marked read-only.

Even on machines on which it is possible to reliably
generate memory faults as a means for detecting stack

overflow, it still may not be possible to recover from
the stack overflow if the hardware and operating system
do not preserve enough of the state of the system. In
particular, it may not be possible to determine which
instruction caused the overflow or what the contents of
the registers were when the overflow occurred.

If all requirements can be met, then the memory man-
agement system can be used to create a no-cost solution
to the stack overflow detection problem. The process of
recovering from stack overflow does not in itself need
to be extremely efficient. Since our system allows ar-
bitrarily large stack areas and does not suffer from the
danger of “bouncing” back and forth between overflow
and underflow, arbitrarily large amounts of computa-
tion can be done between stack overflows to amortize
their cost. Consequently, the efficiency of the host sys-
tem’s memory management and exception handlers is
not an issue.

Unfortunately, it has been our experience that mem-
ory exceptions are not a tenable means for detecting
stack overflow on many of the machines on which we
have implemented Scheme. Either we cannot find a rea-
sonable way to generate them or we cannot restore the
state of the system after they have been detected. Fur-
thermore, even on machines for which one could use
the memory management system, the programmer time
necessary to implement and maintain a special system

9



N

base

Segment

Current
Stack

N

fp

esp
} Space for two

call frames

Figure 8. The end-of-stack pointer, esp, always points to a region before the actual end of the stack.
This region must contain enough space for two call frames. Reserving room for two frames simplifies the
overflow check for procedures that make recursive (non-tail) calls and eliminates the overflow check for
procedures that do not make recursive calls.

for each machine may not be reasonable. As a result,
we have turned to explicit checks for stack overflow de-
tection.

The challenge is to implement the overflow checks
with minimal impact on the speed of procedure calls.
Our implementation uses two tactics to minimize the
cost of overflow detection. The first is to make the test
as inexpensive as possible. The second is to avoid the
test whenever possible.

The most important part of making the test inexpen-
sive is to avoid memory references by keeping an end-of-
stack pointer (esp) in a register (see Figure 8). Since the
frame pointer (fp) is already in a register, checking for
stack overflow requires a simple register compare and
branch. We point the esp a constant amount before the
actual end of the stack area so that the comparison does
not have to take into account the expected frame size
as long as it does not exceed the esp offset. In fact, if
the size of a frame is bounded (see Section 4), the esp
offset can be set so that the overflow check need never
take into account the frame size.

In some cases, we can avoid the stack overflow check
entirely. First we make the esp offset even larger—large
enough so that a procedure that only uses a bounded
amount of stack space need not check for overflow. If
space for an extra frame is maintained at the end of the

stack by procedures that do make recursive (as opposed
to tail recursive) calls, then procedures that do not make
recursive calls need not check for overflow. The result
is that leaf routines and routines that form a tight, tail-
recursive loop need not check for overflow.

Additional stack overflow checks can be eliminated by
static analysis of the code. First, some procedures con-
tain paths that meet the criteria for eliminating stack
checks, even if the procedure as a whole does not. Thus
it is desirable to delay the stack check until it is known
that a recursive call will be made, but not so long that
it becomes necessary to repeat the check. Second, the
compiler can determine how much stack space is used
by some recursive calls. If the called procedure uses a
known, bounded amount of stack space and the sum of
its space requirements and those of the current frame
size is less than the space reserved for non-checking pro-
cedures, then the calling procedure need not check for
stack overflow.

6 Conclusions

Our approach to stack management supports bounded-
time continuation operations and stack overflow recov-
ery without adversely affecting the efficiency of proce-
dure calls and returns. Creating a continuation is effi-

10



cient, requiring only the creation of a small stack record
and the adjustment of a small number of fields in an
existing stack record. Reinstating a continuation re-
quires copying a saved stack segment over the current
stack segment, perhaps after first splitting the contin-
uation to limit the size of the copied segment. Stack
overflow and underflow recovery are essentially identi-
cal to continuation creation and reinstatement. Various
problems with naive stack copying approaches to sup-
porting continuations are solved by our approach. Con-
tinuation operations are bounded, stack overflow occurs
infrequently, overflow/underflow “bouncing” is avoided,
and stack allocation is possible for data objects with dy-
namic extent.

The main advantage of our approach over the ap-
proach of heap allocating a linked list of call frames is
that procedure calls and returns do not have to main-
tain explicit frame linkage information. In addition, our
method is less memory-intensive, consuming less heap
space and exhibiting greater locality of reference. As
a result, our approach results in smaller indirect costs
from garbage collection, cache misses, and page faults.
Our approach does not suffer from some of the limita-
tions of the heap-based approach, such as the inability
to reuse frames and the inability to stack-allocate ob-
jects with dynamic extent.

Clinger, et. al. [3], argue that a hybrid stack/heap
mechanism may be most appropriate for Scheme and
Smalltalk. Their mechanism provides for the frames to
be allocated on a stack and moved into a heap-allocated
linked list when a continuation is created. This list re-
mains in the heap indefinitely and the frames in the
list are never copied back onto the stack. Procedure
returns must check whether or not they are returning
from a frame on the stack, which requires adjustment of
the stack pointer, or on the heap, which requires follow-
ing the frame link. The hybrid stack/heap model suffers
from some of the disadvantages of the pure heap model.
In particular, a small additional cost is paid for proce-
dure returns (but not calls) and objects with dynamic
extent cannot generally be stack allocated because they
move if a continuation is created. In addition, the stack
must be kept small so that the cost of creating a con-
tinuation is bounded, which results in more frequent
stack overflows. The primary advantage of the hybrid
stack/heap mechanism is that there is never more than
one copy of a given frame. They were motivated by
Danvy [4], who pointed out that multiple continuation
copies can lead to unbounded allocation. While our ap-
proach does not avoid duplication of stack frames, the
bound we place on stack segment size on continuation
reinstatement places a bound on the amount of dupli-
cation, and the amount of memory resulting from this

duplication is at worst a constant factor more than with
the stack/heap approach.

We have implemented the continuation and overflow
mechanisms described in this paper and incorporated
them into the implementation of Chez Scheme. We
have not modified the compiler to enforce the frame
size bound. It is not clear that doing so would be worth
the effort; static analysis of the source code for Chez
Scheme indicates that 99% of all frames are smaller than
30 words, and we suspect that the dynamic behavior is
skewed toward even smaller frames. We are investigat-
ing the use of similar mechanisms in the implementation
of concurrent continuations [11].

Acknowledgement: We wish to thank Olivier Danvy for
providing comments on an earlier draft of this abstract.

References

[1] Andrew W. Appel, “Garbage collection can be faster
than stack allocation,” Information Processing Letters
25, 1987, 275–279.

[2] David H. Bartley and John C. Jensen, “The Imple-
mentation of PC Scheme,” Proceedings of the 1986 ACM
Conference on Lisp and Functional Programming, Au-
gust 1986, 86–93.

[3] William D. Clinger, Anne H. Hartheimer, and Eric
M. Ost, “Implementation Strategies for Continuations,”
Proceedings of the 1988 ACM Conference on Lisp and
Functional Programming, July 1988, 124–131.

[4] Olivier Danvy, “Memory Allocation and Higher-
Order Functions,” Proceedings of the SIGPLAN ’87
Symposium on Interpreters and Interpretive Techniques,
June 1987, 241–252.

[5] Edsger W. Dijkstra, “Recursive Programming,” in
Programming Systems and Languages, Saul Rosen (ed.),
McGraw-Hill, NY, 1967.

[6] R. Kent Dybvig, Three Implementation Models for
Scheme, University of North Carolina at Chapel Hill De-
partment of Computer Science Technical Report #87-
011 (PhD Dissertation), April 1987.

[7] R. Kent Dybvig and Robert Hieb, “Engines from
Continuations,” Indiana University Computer Science
Department Technical Report No. 254, July 1988.

[8] Daniel P. Friedman, Christopher T. Haynes and
Mitchell Wand, “Obtaining Coroutines with Continu-
ations,” Computer Languages 11, 3/4, 1986, 143–153.

[9] Adele Goldberg and David Robson, Smalltalk 80:
the Language and its Implementation, Addison-Wesley,
1983.

11



[10] Christopher T. Haynes and Daniel P. Friedman,
“Abstracting Timed Preemption with Engines,” Jour-
nal of Computer Languages 12, 2, 1987, 109–121.

[11] Robert Hieb and R. Kent Dybvig, “Continuations
and Concurrency,” Second ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), March 1990 (to appear).

[12] Drew McDermott, “An Efficient Environment Allo-
cation Scheme in an Interpreter for a Lexically-Scoped
Lisp,” Conference Record of the 1980 Lisp Conference,
August 1980, 154–162.

[13] David Kranz, Richard Kelsey, Jonathan Rees, Paul
Hudak, James Philbin, and Norman Adams, “Orbit:
An optimizing compiler for Scheme,” Proceedings of the
SIGPLAN ’86 Symposium on Compiler Construction,
published as SIGPLAN Notices 21, 7, July 1986, 219–
233.

[14] Jonathan A. Rees and William Clinger, eds., “The
Revised3 Report on the Algorithmic Language Scheme,”
SIGPLAN Notices 21, 12, December 1986.

[15] Guy L. Steele Jr., Common LISP: The Language,
Digital Press, 1984.

[16] Gerald J. Sussman and Guy L. Steele Jr., “Scheme:
an Interpreter for Extended Lambda Calculus,” Mas-
sachusetts Institute of Technology Artificial Intelligence
Memo 349, 1975.

12


