
Fixing Letrec (reloaded)

Abdulaziz Ghuloum

Indiana University
aghuloum@cs.indiana.edu

R. Kent Dybvig

Indiana University
dyb@cs.indiana.edu

Abstract
The Revised6 Report on Scheme introduces three fun-
damental changes involving Scheme’s recursive vari-
able binding constructs. First, it standardizes the se-
quential recursive binding construct, letrec*, which
evaluates its initialization expressions in a strict left-
to-right order. Second, it specifies that internal and li-
brary definitions have letrec* semantics. Third, it
prohibits programs from invoking the continuation of
a letrec or letrec* init expression more than once.
The first two changes increase the incentive for han-
dling letrec* efficiently, while the third change gives
the compiler more options for transforming letrec
and letrec* expressions.

This paper extends an earlier effort of Waddell,
Sarkar, and Dybvig to handle the Revised5 Report
letrec and the (then nonstandard) letrec* effi-
ciently. It presents more aggressive transformations for
letrec and letrec* that take advantage of the new
prohibition on invoking the continuations of initializa-
tion expressions multiple times. The implementation
employs Tarjan’s algorithm for finding strongly con-
nected components in a graph that encodes the depen-
dencies among the bindings.

Keywords Scheme, recursive binding construct, in-
ternal definitions, mutual recursion, mutual definition,
continuations, optimization, letrec

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Scheme and Functional Programming ’09 August 22, 2009,
Cambridge, Massachusetts

1. Introduction
Scheme’s letrec form, used to create recursive bind-
ings, is easily transformed into a standard combina-
tion of let and set! expressions [4]. Unfortunately,
the standard transformation introduces unnecessary as-
signments that may inhibit subsequent optimization of
the form. An alternative transformation is described
by Waddell, Sarkar, and Dybvig [9]. This transforma-
tion often succeeds in avoiding unnecessary assign-
ments while maintaining the Revised5 Report seman-
tics for letrec. Waddell, et al., also define a variant
of letrec, called letrec* by analogy to let*, that
evaluates its initialization expressions from left to right,
and they present a similar optimizing transformation
for letrec*.

The Revised6 Report on Scheme [5] changes the
status quo by including letrec* as well as letrec
in the language and, more importantly, by changing
the semantics of internal defines so that define-bound
variables behave as if bound by letrec* rather than
letrec. An immediate consequence of this changes
is that R6RS programs (on average) will contain more
variables bound according to the letrec* semantics.
Thus, optimizing letrec* has become even more im-
portant. Over time, we also expect programmers to
take advantage of this change by using the values of
earlier bindings for the purpose of initializing subse-
quent ones. Unfortunately, this will result in more of
the so-called complex bindings for which the Waddell,
et al., transformation, like the naive transformation, of-
ten produces unnecessary assignments.

The Revised6 Report makes one other semantic
change in its recursive binding constructs, which is to
prohibit programs from invoking the continuation of a
letrec or letrec* init expression more than once.
This gives the implementation more flexibility to avoid
producing assignments whose absence could otherwise

1



have been detected by invoking the continuation of an
initialization expression multiple times.

This paper presents a new transformation algorithm
that often produces fewer assignments than the Wad-
dell, et al., transformation, especially for letrec*. At
worst, it produces the same number of assignments as
the Waddell, et al., transformation. It accomplishes this
by an aggressive partitioning of bindings into mini-
mal mutually dependent groups, aided by Tarjan’s al-
gorithm [6] for finding strongly connected components,
and by taking advantage of the new prohibition against
invoking the continuations of initialization expressions
multiple times.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of the syntax and semantics
of Scheme’s letrec and letrec* forms along with
the run-time restrictions imposed by the standard. Sec-
tion 3 gives the naive but straightforward implementa-
tion of these forms based on source-level macro trans-
formation. Section 4 summarizes the fixing letrec al-
gorithm of Waddell, Sarkar, and Dybvig [9]. Section 5
motivates our work by showing simple examples where
the original algorithm yields undesirable results. Sec-
tion 6 describes the constraints that our transformation
must follow, the analysis it requires, and how it encodes
the information it needs in a graph form. Section 7
shows how the algorithm uses the strongly connected-
components to perform the actual transformation. Fi-
nally, Section 8 provides some concluding remarks.

2. Semantics of letrec and letrec*

The syntax of the letrec and letrec* forms are
identical, except for the opening keyword:

(letrec ([var init] . . . ) body . . . )

(letrec* ([var init] . . . ) body . . . )

The lexical scoping rules for letrec and letrec* are
the same: all of vars are visible in all init expressions
as well as in the body definitions and expressions. For
both forms, evaluation proceeds as follows:

1. All vars are bound to fresh locations.
2. The init expressions are evaluated and the value of

each init is assigned to the corresponding var .
3. The body is evaluated and the values of the last

expression are returned.

The two forms differ in the specifics of item 2. For
letrec, all init expressions are evaluated first, in some

unspecified order, before all bindings are initialized to
the computed values. For letrec*, the bindings are
initialized sequentially: each init is evaluated, and the
corresponding var is set before the next binding is
initialized.

2.1 Restrictions
Although all vars are visible in all init expressions,
the actual evaluation of the init expressions must obey
additional restrictions. For letrec, each init expres-
sion must evaluate without referencing or assigning
the value of any of the vars. During the evaluation of
letrec* init expressions, however, references and as-
signments to previously initialized bindings (e.g., ones
that appear earlier in the list of bindings) are permit-
ted. The R6RS requires that implementations must de-
tect and report violations of this restriction [5], though
some implementations currently ignore this require-
ment.

The R6RS also prohibits programs from invoking
the continuation (returning from the evaluation) of an
init expression. The report specifies that implemen-
tation should detect and report such violations. Thus,
portable programs cannot depend on the implementa-
tion’s behavior when the program violates this prohibi-
tion.

Implementations can enforce both of these restric-
tions via a source code transformation that inserts ad-
ditional checks.

A transformation that guards against the first restric-
tion with minimal overhead is described by Waddell, et
al. [9]. The transformation works as a pre-pass to the
fixing letrec algorithm. It first inserts validity checks
amounting to binding one initialized? variable per
letrec expression, or one per letrec* binding, and
inserting validity checks anywhere a possible violation
of the restriction might occur. Because these checks are
separate from the actual letrec or letrec* bindings,
the transformation does not inhibit optimizations in-
volving the bindings. Because it works independently,
as a prepass, of the transformation of letrec and
letrec* into more primitive forms, it is applicable
regardless of the transformation used, whether it be the
naive transformation, the one described by Waddell, et
al., or the more sophisticated transformation described
in this paper.

To enforce the second restriction, an implementation
can transform an unchecked letrec or letrec* ex-

2



pression into a checked one via a simple transforma-
tion:

(define-syntax checked-letrec
(syntax-rules ()
[(_ ([var init] ...) b b* ...)
(letrec ([var (once init)] ...)

b b* ...)]))

where once is a primitive keyword that behaves ac-
cording to the following definition:

(define-syntax once
(syntax-rules ()
[(_ expr)
(let ([returned? #f])
(let ([v expr])
(when returned?
(assertion-violation ---))

(set! returned? #t)
v))]))

The once wrapper should be omitted at least for init
expressions that cannot possibly invoke their continu-
ations multiple times, including constants, lambda ex-
pressions, variable references, and applications of most
primitives to simple values. An implementation might
also attempt to omit the once wrapper for other ex-
pressions it can prove do not invoke their continuations
multiple times.

The remainder of this paper assumes that all uses
of letrec and letrec* are either correct (i.e, do not
violate the two restrictions of the report stated above)
or that the required checks have already been inserted
by a prior transformation.

3. Naive letrec / letrec* transformation
The task of the fixing letrec pass of the compiler is
to rewrite the general Scheme letrec and letrec*
forms into simpler forms that subsequent passes of the
compiler can easily handle.

The simplest (and most naive) transformation for
letrec* can be achieved at the source level via a
simple macro:

(define-syntax letrec*
(syntax-rules ()
[(_ ([var init] ...) b b* ...)
(let ([var #f] ...)
(set! var init) ...
(let () b b* ...))]))

It is easy to see how the output of this transformation
performs the required letrec* evaluation semantics.
(It enforces none of the restrictions, but we are assum-
ing these are enforced by some earlier transformation.)
The same transformation can be used for letrec ex-
pressions, but it unnecessarily forces the initialization
expressions to be evaluated from left to right, prevent-
ing the compiler from subsequently choosing a differ-
ent order that might result in more efficient code. The
following definition of letrec avoids specifying a par-
ticular evaluation order:

(define-syntax letrec
(lambda (stx)
(syntax-case stx ()
[(_ ([var init] ...) b b* ...)
(with-syntax ([(tmp ...)

(generate-temporaries
#’(var ...))])

#’(let ([var #f] ...)
(let ([tmp init] ...)
(set! var tmp) ...
(values))

(let () b b* ...)))])))

These naive transformations have two unfortunate con-
sequences. First, the compiler cannot always “undo”
the transformation since the resulting code overspeci-
fies the intended behavior. That is, the compiler can-
not tell whether the resulting code is intended to be-
have according to the letrec / letrec* semantics,
or whether it really means binding some variables to
a constant (#f) followed by assigning these variables
to some other values. Second, some optimizing com-
pilers of Scheme cannot handle assigned variables as
efficiently as unassigned ones. In addition to inhibit-
ing inlining, copy-propagation, constant folding, direct
jumps to local procedures, and other optimizations, as-
signed variables often end up being boxed in heap-
allocated locations [1], thus introduce additional run-
time overhead for heap overflow checks when the bind-
ings are introduced, additional memory traffic when the
bindings are used, and possibly additional garbage col-
lection overhead.

4. Waddell’s letrec transformation
The Waddell, et al., algorithm for fixing letrec works
by transforming a letrec expression into a set of let
and fix binding forms. The fix binding form is a

3



restricted form of letrec in which all bound vars are
unassigned and all inits are lambda expressions. The
transformation partitions the letrec bindings into four
sets:

1. [xu eu] ... unreferenced
2. [xs es] ... simple
3. [xl el] ... lambda
4. [xc ec] ... complex

Unreferenced bindings are those evaluated for effect
only: their computed values are never used in the pro-
gram. Bindings that are unreferenced in the program
are eliminated as are assignments to these unreferenced
bindings. The simple bindings are those satisfying the
following criteria: (1) the var is unassigned, (2) the
init is not a lambda expression and does not contain
a reference to any var bound in the same letrec,
and (3) evaluating its init expression cannot capture
and invoke its continuation more than once. (In R5RS
Scheme, an initialization expression is permitted to in-
voke its continuation more than once, but expressions
that do are not considered simple.) The lambda bind-
ings set contains the bindings where the var is unas-
signed and the init is a lambda expression. The lambda
bindings are bound using fix in the output of the trans-
formation. All other bindings are considered complex.

After partitioning the bindings, a letrec expression
is transformed to:

(let ([xs es] ... ; simple bindings
[xc #f] ...) ; complex bindings

(fix ([xl el] ...) ; lambda bindings
eu ... ; unreferenced
(let ([xt ec] ...) ; complex values
(set! xc xt) ...)

body))

with the inner let expression omitted if no bindings
are complex.

For letrec*, the bindings are similarly partitioned
into unreferenced, simple, lambda, and complex bind-
ings following the same criteria used for letrec ex-
pressions. The only difference in the transformation is
that the unreferenced init expressions and the assign-
ments to complex bindings must be interleaved in order
to preserve the left-to-right evaluation order required
for letrec*. Assuming no unreferenced bindings, a
letrec* expression is transformed to:

(let ([xs es] ... ; simple bindings
[xc #f] ...) ; complex bindings

(fix ([xl el] ...) ; lambda bindings
(set! xc ec) ... ; complex inits
body))

Because some expressions considered simple for pur-
poses of the letrec transformation might raise ex-
ceptions or perform side effects, the rules for simple
expressions given above are too liberal to preserve
the strict left-to-right evaluation order constraint for
letrec* initialization expression. Thus, the Waddell,
et al., transformation treats as complex any otherwise
simple binding whose right-hand side is not effect
free” [9]. For example, the expression (car x) is not
considered simple for purposes of the letrec* trans-
formation, since the car procedure may raise an excep-
tion if x is not a pair. In general, an expression cannot
be considered effect free if it modifies state, exits from
the program, raises an exception, or might not termi-
nate. This has the unfortunate consequence of making
many bindings complex, leading to all the drawbacks
of assigned variables mentioned earlier. To be effective,
fixing letrec should have a better story for handling such
init expressions than to treat them as complex.

5. Why does it matter?
Consider the following simple program fragment:

(let ()
(define q 8)
(define f (lambda (x) (+ x q)))
(define r (f q))
(define s (+ r (f 2)))
(define g (lambda () (+ r s)))
(define t (g))
t)

which should be understood in terms of a straightfor-
ward transliteration into letrec*, with the bindings
appearing in the same order.

According to the Waddell, et al., partitioning algo-
rithm, the binding for q is considered simple, the bind-
ings for f and g are lambda, and the bindings for r, s,
and t are complex. After fixing letrec, the code is trans-
formed to:

(let ([q 8])
(let ([r #f] [s #f] [t #f])
(fix ([f (lambda (x) (+ x q))]

4



[g (lambda () (+ r s))])
(set! r (f q))
(set! s (+ r (f 2)))
(set! t (g))
t)))

Because the variables q, f, and g are unassigned, they
are straightforward targets for inlining, copy propaga-
tion, and other optimizations performed by a source op-
timizer such as the one described by Waddell and Dy-
bvig [7, 8]. The assigned variables r, s, and t are not,
so the resulting code after optimization might look like
the following less-than-ideal code:

(let ([t #f] [s #f] [r #f])
(set! r 16)
(set! s (+ 10 r))
(set! t (+ r s))
t)

Compare this with the following program, which at the
source level appears less efficient as it contains several
more lambda expressions and procedure calls:

(let ()
(define q (lambda () 8))
(define f (lambda (x) (+ x (q))))
(define r (lambda () (f (q))))
(define s (lambda () (+ (r) (f 2))))
(define g (lambda () (+ (r) (s))))
(define t (lambda () (g)))
(t))

It is discomforting and counterintuitive that the Wad-
dell and Dybvig source optimizer boils this down to just
the constant “42” while the simpler program shown at
the beginning of this section does not, all because the
letrec* transformation produces unnecessary assign-
ments.

The goal of an efficient letrec and letrec* trans-
formation is to reduce the number of emitted variable
assignments (set!s) by turning as many of the bind-
ings into simple let or fix bindings as possible. The
original fixing letrec algorithm fails to do so, in essence,
because it assumes that all of the bindings are possibly
mutually dependent and thus must be grouped together
in the output.

The new algorithm removes this restriction by group-
ing a set of bindings together only if they are mutually
dependent. It can thus handle each nonrecursive com-
plex binding in a group by itself without introducing

an assignment. For example, it transforms the program
given above into the following assignment-free pro-
gram:

(let ([q 8])
(fix ([f (lambda (x) (+ x q))])
(let ([r (f q)])
(let ([s (+ r (f 2))])
(fix ([g (lambda () (+ r s))])
(let ([t (g)])
t))))))

6. Constraints, analysis, and encoding
Ideally, the transformation would place each letrec
or letrec* binding in its own let or fix expression,
each nested inside the previous ones, and so avoid all
assignments. It cannot do so, however, due to semantic
constraints that must be obeyed in order to handle the
full generality of letrec and letrec*.

6.1 Constraints due to lexical scope
The lexical scope rule for let bindings requires that the
right-hand-side expressions cannot reference any of the
left-hand-side variables or any variables not bound in
an outer scope. So, if x and y are two letrec bindings,
we cannot place x in an outer let to y if x’s init
expression refers to y.

The lexical scope rule for fix bindings allows for
mutual recursion among lambda expressions: the vari-
ables at the left-hand-side can appear at the right-hand-
side lambda expressions as well as in the fix body.
Consider the following example:

(let ()
(define f (lambda () (even? 5)))
(define even?
(lambda (x)
(or (zero? x) (odd? (- x 1)))))

(define odd?
(lambda (x) (not (even? x))))

(define t (f))
t)

Because even? and odd? are mutually recursive, they
must be bound by the same fix. The procedure f refer-
ences even?, but neither even? nor odd? references f,
so f is placed in an inner fix. (Since it is nonrecursive,
it could be bound by let instead, but we bind it using
fix to facilitate a later, independent transformation that
combines nested fix expressions to simplify the block

5



allocation and wiring together of procedures.) The vari-
able binding t is placed inside the binding for f since
it references f, and none of the other bindings refer-
ence it. The final product of the transformation shows
the effect of scoping constraints on the output of the
transformation.

(fix ([even? (lambda (x) --- odd? ---)]
[odd? (lambda (x) --- even? ---)])

(fix ([f (lambda () (even? 5))])
(let ([t (f)])
t)))

The transformation cannot transform all letrec and
letrec* forms into arbitrarily nested let and fix
bindings and thus avoid ever producing an assignment.
For example, the program

(letrec ([x (list (lambda () x))]) x)

necessarily requires the introduction of an assignment
to establish the cyclic relationship between the proce-
dure and the pair. It is thus transformed into the follow-
ing equivalent program

(let ([x #f])
(set! x (list (lambda () x)))
x)

Similarly, an assignment may be introduced for more
than one recursively defined nonprocedure binding. In
the following example, x and y are mutually recursive
nonprocedure bindings, both requiring an assignment.
The binding for f refers to both x and y but it can
appear in an inner binding because neither x nor y
refers to it.

(let ()
(define x (list (lambda () y)))
(define f (lambda () (cons x y)))
(define y (list (lambda () x)))
(define t (f))
t)

=>
(let ([x #f] [y #f])
(fix ([f (lambda () (cons x y))])
(set! x (list (lambda () y)))
(set! y (list (lambda () x)))
(let ([t (f)])
t)))

If the initialization expressions for two complex bind-
ings are not mutually recursive, however, the assign-
ments can be avoided. For example, assuming x, f, and
g are defined outside of the following expression and
both y and z are referenced within body:

(let ()
(define y (f x))
(define z (g x))
body)

is transformed into the following.

(let ([y (f x)])
(let ([z (g x)])
body))

This transformation would also be valid for the equiv-
alent letrec expression, with the R6RS semantics. It
would not be valid for internal defines following the
R5RS letrec semantics, however, since a continua-
tion catpured by f might be invoked multiple times,
each causing a new location for z to be created, pos-
sibly holding a different value each time.

6.2 Constraints due to evaluation order
For letrec* (but not for letrec), an additional con-
straint on the transformation is forced by the require-
ment that the init expressions be evaluated sequentially
from left to right. Evaluating an init expression may,
however, cause side effects. The letrec* transforma-
tion therefore must preserve the order of observable
side effects in the init expressions as they appear in
the input program.

Whether an init expression causes an observable
side effect is undecidable in general, so the analysis
to determine whether it does so must be conservative.
Our current implementation considers an init expres-
sion to have a side effect if it contains a procedure call
or a set! expression occurring outside of a lambda
expression. This gives the implementation the freedom
to reorder the simple bindings comprising of constants,
variable references, primitive references, lambda ex-
pressions, and the combination of simple expressions to
form certain primitive calls, if, begin, let, letrec,
and letrec* expressions.

6.3 Viewing constraints as a dependency graph
The first part of our algorithm works by encoding each
letrec and letrec* instance as a directed graph G

6



in which the nodes are the set of vars and the arcs
represent the dependencies between bindings.

The dependencies are derived from the lexical scope
and (for letrec*) evaluation order constraints and
control the overall structure of the result of the trans-
formation. For example, the lexical scope rule dictates
that at the output of the transformation, an init in an
outer let or fix binding must not reference a vari-
able placed in an inner binding. Or, stated differently,
if xi appears free in some init j expression, xi has to be
bound before (or at the same time) init j is evaluated
but not later. Thus, the binding for xj is said to depend
on the binding for xi as in the following definition:

Dependency graph for letrec:
Given a set of bindings {〈xi, init i〉∗}, the dependency
graph is G = 〈V,E〉 where

V = {xi∗} and
E = {(xj , xi) : xi ∈ FV (init j)}.

Constraints due to the specified evaluation order for
letrec* are encoded in a similar fashion. If two init
expressions might perform observable side effects,
their order must be preserved in the output of the trans-
formation. Thus, the edges of the dependency graph for
letrec* must contain an arc xj → xi if init j must be
evaluated after init i.

Dependency graph for letrec*:
Augments the edges of the corresponding letrec
graph with the set
{(xj , xi) : init j and init i are complex and j > i}.

Dependencies are transitive, e.g., if (xi, xj) ∈ E and
(xj , xk) ∈ E, then (xi, xk) ∈ E and thus need not be
encoded explicitly. In fact, our implementation adds at
most N − 1 order-of-evaluation edges for a letrec*
containing N bindings and not the O(N2) edges re-
quired if all pairs of dependent bindings are connected.

The dependency graphs for the programs presented
so far are shown in figure 1. It is instructive to compare
each dependency graph with the corresponding code
after transformation.

6.4 Strongly connected components
Once the dependencies among bindings are deter-
mined, the resulting graph is partitioned into strongly

q

f

r

s

g

t

e o

f

t

y x

f

t

Figure 1. The dependency graphs for the first three
source programs shown in Section 6. The left-most
graph is for the program at the beginning of Section 5.
The two shorter graphs are for 6.1 and 6.2. The edges in
these graphs record the constraints due to lexical scope
and evaluation order.

connected components (SCCs) using Tarjan’s algo-
rithm [6]. An SCC in G is the largest subgraph of G
in which every node is reachable when starting from
every other node in the SCC.

The Tarjan algorithm works by visiting all reachable
nodes starting from some node xs, in a depth-first-order
traversal, ranking each node with its depth of traversal,
and combining cycles as they are encountered.

In its simplest case, an SCC contains just a single
node (which may or may not be pointing back to itself).
If an SCC contains more than one node, these nodes are
mutually dependent, either because they are mutually
recursive or because one node references another that
must follow it in the left-to-right evaluation order of
letrec*.

The arcs of G not only determine the set of SCCs
but also defines a partial order relation on the SCCs.
Our implementation of Tarjan’s algorithm returns an
ordered list of SCCs such that SCCi does not depend
upon SCCj if i < j, but SCCj might depend on SCCi.

7. Transformation based on SCCs
The letrec and letrec* transformation partitions the
set of bindings into strongly connected components.

7



We only need to consider how to generate code for a
single SCC. This is because the list of SCCs obtained
from the Tarjan algorithm is ordered according to the
required dependencies, so the bindings for each SCC
need merely be nested within the bindings for previous
SCCs.

Each SCC is handled in a manner similar to the way
the Waddell, et al., transformation handles the entire
set of letrec and letrec* bindings, except that we
treat specially the case where an SCC contains only one
binding.

Single bindings: Code generation for an SCC con-
taining a single binding 〈var , init〉 is handled accord-
ing to one of the following cases:

– If init is a lambda, and var is unassigned:
(fix ([var init]) rest)

– If var /∈ FV (init):
(let ([var init]) rest)

– Otherwise, we resort to assignment:
(let ([var #f])
(set! var init)
rest)

The rest code in the transformation denotes the code
for subsequent SCCs and the transformed body expres-
sion.

Multiple bindings Code generation for an SCC con-
taining multiple bindings is done by partitioning the
bindings into two parts:

1. 〈varλ, initλ〉 if init is a lambda expression and var
is unassigned.

2. 〈varc , initc〉 otherwise.

Tarjan’s algorithm does not guarantee an order of re-
turned elements for each SCC, so, for letrec*, the
complex bindings need to be sorted according to their
occurrence in the original letrec* form. The two par-
titions are used to produce the following code:

(let ([var c #f] . . . )
(fix ([varλ initλ] . . . )
(set! var c initc) . . .
rest))

The graphs shown in Figure 1 tell the whole story. The
first graph shows a long chain of dependencies, but all
SCCs are of size 1. This is why the transformed code

(shown at the end of Section 5) has a deeply nested let
and fix forms, each binding a single variable. The sec-
ond graph (the even?/odd? example) shows two mu-
tually recursive bindings in one SCC (producing a fix
binding in the output) and two singleton SCCs (produc-
ing two let bindings). The last graph also shows an
SCC with two bindings, but this time, x and y cannot
be bound with fix, and thus an assignment is needed.

8. Conclusions
The letrec and letrec* transformation algorithm
described in this paper improves on the handling of
letrec and letrec* by Waddell, et al. [9], by pro-
ducing fewer assignments, thus reducing direct over-
head from assignments as well as the indirect overhead
from the inhibition of certain optimizations. Each bind-
ing that would be considered simple by the Waddell,
et al., transformation ends up in its own SCC. Since
simple bindings cannot reference any of the left-hand-
side variables, they are handled by the second single-
binding case above, i.e., they are bound by let ex-
pressions. Similarly, all lambda bindings end up bound
by fix expressions. The difference between the Wad-
dell, et al., transformation and ours is in the treat-
ment of bindings the former considers complex. While
the Waddell, et al., transformation always introduces
assignments for complex bindings, our transformation
avoids assignments for those that are nonrecursive and
end up in their own SCC, which appears in our ini-
tial experiments to be by far the most common case.
For letrec*, some apparently simple bindings must be
considered complex, such as primitive calls that might
raise exceptions, so this improvement is particularly
important for R6RS, which employs letrec* seman-
tics for internal definitions.

We have implemented the original and new algo-
rithms and wired them into the Ikarus [3] and Chez
Scheme [2] compilers, with a parameter to select which
algorithm to run. Using both systems, we compared
the effectiveness of the two algorithms in eliminat-
ing complex bindings while bootstrapping the compiler
and run-time libraries, which for both systems involves
thousands of letrec or letrec* bindings. 10% of
Ikarus’s bindings and 7.2% of Chez Scheme’s bindings
are considered complex by the original algorithm ver-
sus only .6% and .1% for the new. Thus, in both sys-
tems, the complex bindings are a substantial fraction of

8



all letrec/letrec* bindings using the original algo-
rithm, but an insignificant fraction using the new.

Although the bootstrapping times for Ikarus improve
by just under 11% when switching from the original
to new algorithms, the bootstrapping times for Chez
Scheme do not improve significantly. This is likely
due, in part, to the fact that most of the code that af-
fects Chez Scheme’s compile-time was written before
letrec* was introduced and internal definitions were
changed to use letrec* semantics. Furthermore, most
of the code was developed with an even less effective
algorithm for handling letrec than the Waddell, et
al., algorithm, and this has caused the developers to
shy away from potentially complex bindings in time-
critical portions of the system.

Based partly on our experience, we believe that pro-
grammers will take advantage of the letrec* seman-
tics for internal definitions, especially with the knowl-
edge that letrec* can be implemented effectively, and
that the improvement afforded by the new transforma-
tion will become increasingly more valuable over time.
It will be interesting to test this hypothesis once a large
corpus of programs written specifically for R6RS be-
comes available.

References
[1] R. Kent Dybvig. Three Implementation Models for

Scheme. PhD thesis, University of North Carolina,
Chapel Hill, April 1987.

[2] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide.
Cadence Research Systems, 2005.

[3] Abdulaziz Ghuloum. Ikarus Scheme User’s Guide,
2009.

[4] Richard Kelsey, William Clinger, and Jonathan Rees
(Editors). Revised5 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

[5] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and
Anton van Straaten (editors). Revised6 report on the
algorithmic language Scheme. 2007.

[6] Robert Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972.

[7] Oscar Waddell. Extending the Scope of Syntactic
Abstraction. PhD thesis, Indiana University Computer
Science Department, August 1999.

[8] Oscar Waddell and R. Kent Dybvig. Extending the scope
of syntactic abstraction. In Conference Record of POPL
99: The 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio,
Texas, pages 203–213, New York, NY, 1999.

[9] Oscar Waddell, Dipanwita Sarkar, and R. Kent Dybvig.
Fixing letrec: A faithful yet efficient implementation of
Scheme’s recursive binding construct. Higher Order
Symbol. Comput., 18(3-4):299–326, 2005.

9


