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Abstract

Destination-driven code generation is a simple top-down technique that allows the code gener-
ated for a program phrase to depend upon its context in an abstract syntax tree. The context
is encapsulated in a data destination and a control destination. The data destination specifies
where the value computed by an expression is to be stored, while the control destination specifies
where program execution is to resume after computation of the value. Together, the destinations
allow a code generator to specify data and control flow dependencies between subcomputations.
As a result, these subcomputations can be “wired” together in an efficient manner. We illus-
trate the technique by presenting a code generator for a subset of the programming language C.
This technique has been used in the implementation of an incremental compiler for the Scheme
programming language that generates code for one of several computer architectures.

1 Introduction

In this article, we introduce a straightforward code generation strategy called destination-driven
code generation, which is used to generate high-quality assembly code directly from abstract syntax
trees. Code generation proceeds in one pass with no back-patching or code splicing. In most cases,
destination-driven code generation results in code free of unnecessary loads and stores, unnecessary
tests and branches, dead code, and some forms of useless code. Thus, the code generated is of
sufficient quality that block reordering [12] and peephole optimization [4] are typically unnecessary.

A destination-driven code generator can be used as the single pass in the back-end of a simple
compiler as one of the final passes in a complex optimizing compiler. Because high-quality code
is generated in one pass, destination-driven code generation is especially useful in interactive com-
puting environments where compilation speed is as important as the quality of the code that is
generated.

The abstract syntax trees passed to the code generator may be produced by the front-end, or
syntax analysis phase, of the compiler, or they may be the result of earlier optimization and analysis
passes operating on the output of the front-end. The use of an abstract syntax tree representation
for the intermediate language rather than a more assembly-code-like representation allows the
intermediate code to more closely resemble the source program from which it was derived.

Destination-driven code generation is a simple top-down technique that allows the code gen-
erated for a program phrase to depend upon its context in an abstract syntax tree. This context

∗This material is based on work supported by the National Science Foundation under grant number CCR-8803432.
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is encapsulated in a data destination and a control destination. The data destination specifies
whether the value computed by a subtree is needed to compute the value of its parent. It is often
the case that this value is not needed; this is especially true when trees are derived from statements
in a language that distinguishes statements from expressions. Moreover, many languages, notably
Scheme [13] and C [11], allow expressions that perform side effects to be evaluated “for effect only.”
We treat syntax trees as representations of expressions and rely on the data destination to signal
when an expression value is not needed. This simplifies the code generator and avoids generating
store instructions for values that are not needed. When the value computed by a subtree is needed,
the data destination specifies its storage location. Therefore, the code generator can specify inter-
mediate locations in a way that is convenient for “higher level” computations. By contrast, the
redundant loads and stores generated by techniques that require the value of a subcomputation to
be placed in a predetermined location are avoided.

Just as the data destination eliminates unnecessary move instructions, the control destination
eliminates unnecessary jumps. The control destination specifies where to go next. In many cases the
control destination simply specifies that the computation is to continue with the next instruction;
however, in order to accommodate constructs that alter the sequential flow of control, the control
destination can also be a label, a pair of labels, or a special return destination. When the control
destination is a pair of labels, the flow of control is to be altered according to the boolean value of the
current expression. A single label indicates an unconditional jump over code for an expression that
is conditionally evaluated, e.g., the else part of an if statement. The return destination indicates
when there is nothing left to do in the current procedure; a return sequence can then be generated
immediately after the code that computes the value of an expression.

A code generator that handles structured control constructs gracefully may fail to handle nesting
of these constructs and may therefore generate jumps to jumps or jumps to returns. For instance,
when the last statement of a while loop is another while loop, any break from the inner while loop
should jump directly to the top of the outer loop. However, the code generated for a break from
the inner loop may in fact be a jump to the end of the loop, followed by a jump to the top of the
outer loop. The redundant jumps can be avoided if the inner loop inherits the control destination
specified for the body of the outer loop. In general, the generation of redundant jump sequences for
nested control constructs can be avoided via a simple inheritance scheme on control destinations.

Traditional approaches to code generation divide code generation into several components. The
code is broken into basic blocks and a control graph connecting the basic blocks is constructed
to preserve the flow information of the original program. The basic blocks themselves are broken
up into simpler, intermediate code in some form of “three-address code.” This division allows the
control graph and the basic blocks to be optimized independently. Most of the literature addresses
a particular component of this compilation process. A variety of code generation strategies for
converting from intermediate code into machine code have been proposed, generally with the intent
to generate locally optimal and/or retargetable code [2, 1, 15, 6, 7, 10, 8, 9]. A general description of
the traditional approach and a review of some of the major code generation techniques can be found
in Aho, et. al. [3]. On the other hand, our approach treats code generation for control structures
and expressions uniformly, generating object code in a single pass over the abstract syntax tree.

An interesting analogue to our approach can be found in cps (continuation-passing style) trans-
formations [16]. The cps transformation simplifies code by breaking it into functionalized basic
blocks that are invoked with an explicit continuation argument. The continuation embodies both
the control and data destinations of our technique. However, this technique only results in good
code generation if the resulting continuations are carefully analyzed and optimized.
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n ∈ Int
x, f ∈ Identifier

P ∈ Program ::= F . . .

F ∈ Fundecl ::= fundecl f params locals E

E ∈ Expression ::= sequence E E
| while E E
| break
| return E
| if E E E
| if E E
| assign x E
| binop op E E
| and E E
| or E E
| not E
| call f E . . .
| var x
| int n

Figure 1: Abstract syntax for a subset of C.

The next three sections of this article are devoted to the development of a destination-driven
code generator. The code generator produces assembly code for the DEC VAX [5] architecture from
a representation of abstract syntax trees for a subset of the C programming language. Section 2
presents an abstract syntax for the chosen subset of C and briefly discusses syntactic and semantic
issues relating to the source and target languages. Section 3 presents a destination-driven code
generator that translates from the abstract syntax to the target language. The final section discusses
the interaction between optimization and destination-driven code generation and summarizes the
important aspects of the technique.

2 Source and Target Languages

2.1 Source Language

Figure 1 presents a grammer for a language of abstract syntax trees that corresponds to a subset of
the C programming language. The grammer deviates from the concrete syntax of C in the omission
of certain language constructs and in its treatment of blocks. Only while loops are treated; other
loop forms can be treated in a similar manner or translated into equivalent while loops. Data
is restricted to type Int and a representative subset of the standard operators are included. For
simplicity we assume that block variables are renamed as necessary and that their declarations are
lifted to the locals field of the enclosing procedure definition.

Many of the traditional distinctions between statements and expressions are not preserved in C.
Variable assignments are expressions and expressions may be used as statements. Use of boolean
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(sp): LOCALm
...

LOCAL1

(fp): saved argument pointer
saved frame pointer

saved program counter
...

(ap): number of arguments
ARG1

...
ARGn

Figure 2: Format of a call frame.

operators is not limited to conditional and loop test expressions. Furthermore, expression analogs
of the traditional statement forms if and sequence are provided. The end result is that whether a
construct is classified as an expression or a statement depends largely upon its use, and consequently
the abstract syntax in Figure 1 does not distinguish between statements and expressions.

2.2 Target Language

The VAX architecture provides an orthogonal set of instructions common to most multi-register
machines. There are fifteen general purpose registers (excluding the program counter); three of
these are reserved as indices into the control stack. Of the remaining registers we use only r0.
Arithmetic is performed using the VAX complement of three, two, and one operand arithmetic
instructions on long word (integer) data. For example, integer division may be performed with one
of two instructions:

divl3 divisor, dividend, quotient
divl2 divisor, dividend-quotient

Single operand instructions are provided for incrementing and decrementing. Comparisons are
performed using the standard two and one operand (comparison against zero) instructions.

The calls (call with stack arguments) and ret instructions are used to perform procedure
call and return. The format of a call frame is shown in Figure 2. Before the calls instruction is
executed, arguments to the called routine are pushed on the stack in reverse order. The number of
arguments on the stack is the first parameter to the calls instruction; the second parameter is the
address of the called routine. Upon execution of the calls instruction, the number of arguments
is saved on the stack along with the contents of the program counter, frame pointer (fp), and
argument pointer (ap) registers.1 The fp and ap are then repositioned as shown. After control
is transferred to the called routine, space is allocated for local variables. We adhere to the VAX
calling convention, which requires that the return value be placed in register r0, and we do not
generate code that uses any register that must be saved across a call. Execution of a ret instruction
removes the call frame from the stack and restores the contents of the saved registers.

1Other information not relevant to our discussion is stored on the stack as a result of the calls instruction.
Complete details can be found in [5, pp. 6-16–6-18, 9-13].
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All data references are indirect, register direct, or immediate; arguments to a routine are refer-
enced at an offset from the argument pointer, as shown in Figure 2. Stack-allocated (programmer-
declared) locals are referenced at an offset from the frame pointer. Expression temporaries are
generated “on the fly” and are therefore referenced relative to the stack pointer (sp). Assembler
syntax and instruction mnemonics are typeset in typewriter font. Assembly code is generated for
the UNIX “as” assembler [14]. This assembler provides generalized branch mnemonics that are au-
tomatically transformed into appropriate combinations of conditional and unconditional branches
depending on the size of the branch.

3 Code Generation

This section presents a destination-driven VAX assembly code generator for the source language of
Section 2. The code generator is assumed to be the single pass in the back end of a simple compiler.
In particular, it is assumed that programmer-declared variables have not been preassigned locations
and that evaluation of subexpressions may require the generation of expression temporaries. In the
conclusion, relaxation of these assumptions is discussed.

Our presentation of the code generation function is divided into two parts. The first part
discusses aspects of the assembly language interface, including instruction selection and allocation
and deallocation of compiler-generated temporaries. The second part presents the code generation
function.

3.1 The Assembly Language Interface

Every compiler must solve the problems of storage allocation and instruction selection. Since the
destination-driven code generation technique is independent of the solutions for these problems,
simple strategies for storage allocation and instruction selection have been chosen for the code
generator presented in this article. These strategies are briefly discussed in this section.

Since local variables are declared in the locals field of the enclosing procedure declaration, their
locations can be allocated in the call frame at the start of each procedure call. Parameters are also
placed in the call frame, so all programmer-declared variables are preassigned to locations allocated
within the control stack (see Figure 2). Thus, the map from programmer-declared variables to
locations is constant for each fundecl. On the other hand, temporaries are created “on the fly”
and do not have preassigned locations. In some cases, it is necessary to dynamically allocate
and deallocate stack space for temporaries, although we also allow temporaries to reside in the
accumulator (register r0). The set of locations we require thus includes the accumulator, stack
temporaries, parameters, and locals:

A ∈ Location = ac | stack | parami | locali

The set of operands includes the locations plus integer constants:

O ∈ Operand = Location | integer

Operands are mapped to assembly language operands by the functions ↓ and ↑ shown in Figure 3.
When a stack location is defined, the ↓ function allocates the necessary stack space using the
pre-decrement (sp relative) addressing mode. When a stack location is referenced, the ↑ function
deallocates its stack space using the post-increment addressing mode. Both functions map the
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↓ : Location → Code
↓stack ⇒ 〈〈 -(sp) 〉〉
↓ac ⇒ 〈〈 r0 〉〉
↓parami ⇒ 〈〈 4i(ap) 〉〉
↓locali ⇒ 〈〈 -4i(fp) 〉〉

↑ : Operand → Code
↑stack ⇒ 〈〈 (sp)+ 〉〉
↑ac ⇒ 〈〈 r0 〉〉
↑parami ⇒ 〈〈 4i(ap) 〉〉
↑locali ⇒ 〈〈 -4i(fp) 〉〉
↑n ⇒ 〈〈 $n 〉〉

Figure 3: Operand conversion.

〈〈 subl3 A, (sp)+, -(sp) 〉〉 ⇒ 〈〈 subl2 A, (sp) 〉〉
〈〈 subl3 A1, A2, A2 〉〉 ⇒ 〈〈 subl2 A1, A2 〉〉
〈〈 subl3 A1, A2, A3 〉〉 ⇒ 〈〈 subl3 A1, A2, A3 〉〉
〈〈 subl2 $1, A 〉〉 ⇒ 〈〈 decl A 〉〉
〈〈 subl2 $0, A 〉〉 ⇒ 〈〈 〉〉
〈〈 subl2 A1, A2 〉〉 ⇒ 〈〈 subl2 A1, A2 〉〉
etc.

Figure 4: Instruction selection.

accumulator to r0. Since each compiler-generated temporary is defined and referenced exactly
once, the ↓ and ↑ functions serve to allocate and deallocate locations for temporaries.

The environment parameter is a pair consisting of a control component and a data component:

ρ ∈ Environment = Label×Map

The data component is a map from identifiers to locations:

m ∈ Map = Identifier → Location

The control component is a label used to generate code for break expressions. It is discussed in
detail in the next part of this section. Labels are assembly language statement labels or the special
label return:

L ∈ Label = return | assembly language label

Instruction selection is generally dependent on temporary allocation. For instance, the judicious
choice of a temporary location might allow the use of a two operand instruction when a three oper-
and instruction would otherwise be necessary. However, to simplify the presentation, we separate
instruction selection from temporary allocation and employ a simple instruction selection strategy
as demonstrated in Figure 4.
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3.2 The CG Function

The code generator CG takes an expression from the target language, an environment, a data
destination, and a control destination, and returns assembly code in the object language:

CG : Expression → Environment → Data Destination → Control Destination → Code

The data destination is used to determine where the value of the expression parameter is to be
placed. Data destinations are either actual locations as described in Section 3.1 or the special flag
effect:

δ ∈ Data Destination = effect | Location

When the data destination is effect, the value of the expression need not be stored in a location.
However, the value of the expression may be needed to control the flow of execution, as determined
by the control destination.

The control destination indicates where control is to be transferred after execution of the ex-
pression parameter. The control destination is either a label or a pair of labels:

γ ∈ Control Destination = Label | Label× Label

A single label indicates unconditional transfer of control to the control destination. A return from
a procedure body is generated when the label is return. If the control destination is a pair of labels,
the label chosen for transfer of control depends on the boolean value of the expression. A pair of
labels indicates that the expression is being evaluated as a test expression, and control is to be
transferred to one of the labels depending upon the boolean value of the expression.

The control and data destinations implicitly separate expressions into four categories:

1. expressions evaluated for side effects, distinguished by the effect data destination and single
control destinations;

2. expressions evaluated for their value, distinguished by location data destinations and single
control destinations;

3. expressions evaluated for their effect on control flow (and possibly for side effects), distin-
guished by the effect data destination and paired control destinations; and

4. expressions evaluated both for their value and their effect on control flow, distinguished by
location data destinations and paired control destinations.

Expressions in the first category are usually referred to as statements, and we shall adhere to that
convention. However, here the categorization of an expression as a statement is a result of the
actual use of an expression rather than a result of the expression falling into a certain syntactic cat-
egory. Although some expressions, such as while loops, are naturally classified as statements, other
expressions such as sequences or conditionals may be used either as statements or as subexpressions
in a context where the value of the expressions is important. The last two categories, characterized
by paired control destinations, are collectively referred to as test expressions. A test expression is
used to conditionally control a program’s execution, and thus has two control destinations, one of
which must be selected depending upon the value of the test expression. Test expressions in the
third category are evaluated only for their effect on control flow and possibly for side effects, and
thus have the effect data destination. However, since assignments in C return values, they may be
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used as boolean expressions in the test part of a conditional, resulting in test expressions whose
values must be both stored in a location and used to select the appropriate control destination.

The CG function is called for each procedure body with a data destination of effect, a control
destination of return, and an initial environment:

CG [[ E ]] ρinit effect return

The map component of the initial environment ρinit must have locations for the parameters and
local variables. This map is constant during code generation for the body. We assume that stack
space has already been allocated for local variables. Since the control component of the environment
is only used for breaks from loops, its initial value is irrelevant. The initial data destination is effect,
since in C values must be explicitly returned from procedure calls. On the other hand, the initial
control destination is return, since C procedures return implicitly when control “falls off the end”
of a procedure body without encountering a return expression. As the abstract syntax tree for the
body of the fundecl is traversed, the return destination is inherited by any expression that occurs
in tail position. As a result, a return instruction is generated whenever there is nothing left to do
but return. The return destination also indicates when procedure calls are in tail position and can
therefore be used to implement proper tail recursion, as required by Scheme [13].

The rest of this section discusses the code generated for each construct in the source language
of Section 2. We start with the control expressions, shown in Figure 5. These expressions are used
to determine the flow of control in a program. Since while and one-armed if constructs make sense
only in effect contexts, and in fact are restricted to such contexts by the syntax of C, the code
generation function form them shown in Figure 5 ignores the data destination and assumes a single
label for a control destination. On the other hand, sequence and two-armed if expressions can
occur in either effect or value contexts.

The choice of data and control destinations for the subexpressions of a sequence reflect the
imperative, sequential nature of this construct. The first subexpression is executed only for effect,
so it is given effect as a data destination and the label of the second subexpression as a control
destination. The second subexpression of a sequence inherits the data and control destination of
the entire sequence.

An if expression must be able to select appropriately between its then and else parts based upon
the boolean value of its test part. This is accomplished by calling CG on the test part with a paired
control destination, consisting of the labels attached to the then and else subexpressions. The
value of the test subexpression is needed only for its effect on control flow so its data destination
is effect. The then and else subexpressions inherit the data and control destinations of the entire
expression. Since single-armed if statements lack else subexpressions, the test expression uses the
control destination of the entire expression as a false destination.

Code generation for a while loop is initiated by labeling the loop test expression; this label is
then used as the control destination of the loop body. The original control destination is used both
as a break destination and as the false destination of the loop test expression. The break destination
is stored in the control component of the environment used for the loop subexpressions. (A break
statement cannot appear within the loop test expression in C, so the actual control component
for the test expression is irrelevant.) The control environment can also be used to store control
destinations for other exceptional control transfers such as C continue and goto statements.

Values are returned from C procedures by return expressions. A return is accomplished simply
by making the control destination of the return subexpression return and its data destination the
accumulator.

8



CG [[ sequence E1 E2 ]] ρ δ γ ⇒
CG [[ E1 ]] ρ effect L

L:
CG [[ E2 ]] ρ δ γ

CG [[ if Etest Ethen Eelse ]] ρ δ γ ⇒
CG [[ Etest ]] ρ effect (Lthen , Lelse)

Lthen :
CG [[ Ethen ]] ρ δ γ

Lelse :
CG [[ Eelse ]] ρ δ γ

CG [[ if Etest Ethen ]] ρ δ L ⇒
CG [[ Etest ]] ρ effect (Lthen , L)

Lthen :
CG [[ Ethen ]] ρ effect L

CG [[ return E ]] ρ δ γ ⇒
CG [[ E ]] ρ ac return

CG [[while Etest Ebody ]] (Lbreak ,m) δ L ⇒
Ltest :

CG [[ Etest ]] (L,m) effect (Lbody , L)
Lbody :

CG [[ Ebody ]] (L,m) effect Ltest

Figure 5: Control expressions.

Since the control destination for a loop is always a label, the code generated for a break
statement could be simply a jump:

CG [[break ]] (Lbreak ,m) effect γ ⇒
CGjump Lbreak

However, this can result in redundant jumps when a break statement occurs as a branch of an
if statement or as the last statement of a sequence statement. Such jumps can be avoided by
watching for break in the CG functions for if statements and sequence statements, as shown in
Figure 6. If break is the second statement of a sequence statement, the break destination becomes
the control destination of the first statement. Similarly, if break is a branch of an if statement,
the break destination becomes one of the control destinations supplied to the test expression.

This treatment of break allows a simplified treatment of loops, since all loop forms can be
transformed into endless loops with explicit exits without generating unnecessary jumps:

while Etest Ebody ⇒ loop (if Etest Ebody break)
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CG [[ sequence E break ]] (Lbreak ,m) effect γ ⇒
CG [[ E ]] (Lbreak ,m) effect Lbreak

CG [[ if E break ]] (Lbreak ,m) δ L ⇒
CG [[ E ]] (Lbreak ,m) effect (Lbreak , L)

CG [[ if Etest break Eelse ]] (Lbreak ,m) δ γ ⇒
CG [[ Etest ]] (Lbreak ,m) effect (Lbreak , Lelse)

Lelse :
CG [[ Eelse ]] (Lbreak ,m) δ γ

CG [[ if Etest Ethen break ]] (Lbreak ,m) δ γ ⇒
CG [[ Etest ]] (Lbreak ,m) effect (Lthen , Lbreak )

Lthen :
CG [[ Ethen ]] (Lbreak ,m) δ γ

Figure 6: Optimizing break statements.

CG for the generic loop construct is a simplified version of CG for while loops:

CG [[ loop E ]] (Lbreak ,m) effect γ ⇒
Ltop :

CG [[ E ]] (γ, m) effect Ltop

The code generated from the above transformations is identical to the code produced by the original
treatment of while loops.

Assignments in C can occur in a value or effect context. When the data destination is effect,
assignments are handled by calling CG on the subexpression with the current control destination
and with the location of the variable as the data destination:

CG [[assign x E ]] (Lbreak ,m) effect γ ⇒
CG [[ E ]] (Lbreak ,m) m(x) γ

However, when the data destination of the assignment is not effect there are two data destinations.
This can be handled by treating the assignment as a sequence consisting of the original assignment
followed by a reference to the assigned variable:

assign x E ⇒ sequence (assign x E) (var x)

It may be preferable to use a different intermediate location, such as the accumulator, or to avoid
assignments in value contexts altogether by a simple code transformation prior to code generation.

We turn next to code generation for boolean-valued expressions. These expressions include rela-
tional operators such as “<” and boolean connectives such as or, and, and the unary operator not.
Generating code for these expressions is straightforward when they are being used for their effect
on control flow, i.e., when they have a data destination of effect and a pair of control destinations.

Figure 7 shows how CG generates code for or, and, and not when they are being used as test
expressions. If the first subexpression of an or expression evaluates to true the whole expression is
true and the second subexpression is not evaluated. On the other hand, if the first subexpression of
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CG [[or E1 E2 ]] ρ effect (Ltrue , Lfalse) ⇒
CG [[ E1 ]] ρ effect (Ltrue , L)

L:
CG [[ E2 ]] ρ effect (Ltrue , Lfalse)

CG [[and E1 E2 ]] ρ effect (Ltrue , Lfalse) ⇒
CG [[ E1 ]] ρ effect (L,Lfalse)

L:
CG [[ E2 ]] ρ effect (Ltrue , Lfalse)

CG [[not E ]] ρ effect (Ltrue , Lfalse) ⇒
CG [[ E ]] ρ effect (Lfalse , Ltrue)

Figure 7: Boolean expressions in conditional contexts.

an or expression evaluates to false, the second subexpression is evaluated and its value is the value
of the complete expression. Consequently, the first subexpression receives the true destination of
the or expression as a true destination and the label of the second expression as a false destination.
The second subexpression simply inherits the control destination of the entire or expression. and
expressions are treated similarly. Nowhere is the utility of the control destination better evidenced
than in the CG function for not—the semantics of not are captured simply by swapping the true
and false labels of the input control destination.

The relational operators require their operands in suitably simple forms. Often the original
operands are complex and must be simplified. This simplification is performed by CG for binary
operators, as shown in Figure 8. CG examines the operands and if necessary assigns temporaries
and invokes CG on the operands with the temporaries as data destinations. We use the stack and
accumulator as temporaries. Since the accumulator is a register it is the preferred temporary, and
the stack is only used if both operands are complex. In Figure 8, S indicates simple expressions.
Simple operands consist of variable references and constants. The auxiliary function CGoperand is
used to translate simple expressions into operands:

CGoperand : Simple Expression → Environment → Operand
CGoperand [[var x ]]ρ = ρ[[ x ]]
CGoperand [[ int n ]]ρ = n

The operator and locations of the values of the subexpressions are passed to CGbinop , which
generates code for the binary operation:

CGbinop : Expression → Operand → Operand → Data Destination → Control Destination → Code

Generating code for the relational operators is straightforward when they are being used as boolean
control expressions. For example, here is CGbinop for < with an effect data destination and a paired
control destination:

CGbinop [[ < ]] O1 O2 effect (Ltrue , Lfalse) ⇒
〈〈 cmpl ↑O1, ↑O2 〉〉
CGbranch (〈〈 jlss 〉〉, Ltrue) (〈〈 jgeq 〉〉, Lfalse)

The branching code is produced by the auxiliary function CGbranch , which is discussed below.
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CG [[binop op S1 S2 ]] ρ δ γ ⇒
CGbinop [[ op ]] (CGoperand [[ S1 ]]ρ) (CGoperand [[ S2 ]]ρ) δ γ

CG [[binop op S E ]] ρ δ γ ⇒
CG [[ E ]] ρ ac L

L :
CGbinop [[ op ]] ac (CGoperand [[ S ]]ρ) δ γ

CG [[binop op E S ]] ρ δ γ ⇒
CG [[ E ]] ρ ac L

L :
CGbinop [[ op ]] (CGoperand [[ S ]]ρ) ac δ γ

CG [[binop op E1 E2 ]] ρ δ γ ⇒
CG [[ E1 ]] ρ stack L1

L1 :
CG [[ E2 ]] ρ ac L2

L2 :
CGbinop [[ op ]] stack ac δ γ

Figure 8: Evaluating binary operations.

So far we have dealt only with boolean expressions in contexts where they are used for controlling
conditional execution. In C, boolean expressions may also be used in value contexts, in which case
they evaluate to either zero (false) or one (true). The simplest way to generate code for a boolean
expression whose data destination is not effect is to convert it to an equivalent if expression that
explicitly returns one or zero:

Ebool ⇒ if Ebool (int 1) (int 0)

Since the boolean expression is now the test subexpression of an if statement, CG will assign it an
effect data destination and a paired control destination, and it can be handled as described above.

It is also possible for a boolean expression to occur in a context in which the data destination
is effect, but the control destination is not a pair. This situation is typically a result of using the
results of the subexpressions of the boolean expression to control side effects. In this situation, and
and or expressions can be treated as equivalent if expressions:

and E1 E2 ⇒ if E1 E2

or E1 E2 ⇒ if (not E1) E2

In the case of the relational operators and not expressions, since nothing will be done with the
result of the operation it is only necessary that the subexpressions be evaluated if they can result
in side effects:

binop relop E1 E2 ⇒ sequence E1 E2

not E ⇒ E

After code is generated for relop subexpressions and the required comparison is generated, the
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auxiliary function CGbranch is called to generate a branch in the flow of control:

CGbranch : (Code× Label)× (Code× Label) → Code

CGbranch (jmp1, L1) (jmp2, L2) ⇒
〈〈 jmp1 L1 〉〉
CGjump L2

if L2 = return or L2 = Lnext and L1 6= return
〈〈 jmp2 L2 〉〉
CGjump L1

otherwise

CGbranch receives two mnemonic-label pairs. One of the pairs is used to generate a conditional
branch instruction; the label from the other pair is used by CGjump to generate an unconditional
branch or return instruction. Since return is not a valid target for a conditional branch, return
labels are always passed to CGjump . Otherwise, if one of the labels refers to the next statement
(indicated by Lnext above), it is passed to CGjump , since no code is generated to fall through to the
next statement.

Jumps and returns are generated by the CGjump function, show below.

CGjump : Label → Code
CGjump return ⇒ 〈〈 ret 〉〉
CGjump Lnext ⇒ 〈〈 〉〉
CGjump L ⇒ 〈〈 jbr L 〉〉, otherwise

If the label passed to CGjump is return, a ret instruction is generated. If the label passed to CGjump

is the label of the next statement (Lnext), no code is generated. Otherwise, a jbr instruction to
the target label is generated.

Our discussion of CGbranch and CGjump assume some mechanism for determining when a label is
attached to the next statement. One approach is to provide a “next-label” argument to the code
generation functions. Then, for instance, the CG function for sequence statements would be:

CG [[ sequence S1 S2 ]] ρ δ γ Lnext ⇒
CG [[ S1 ]] ρ effect L L

L:
CG [[ S2 ]] ρ δ γ Lnext

The constructs that remain—arithop, call, var, and int—are typically used to produce values.
To simplify CG for var and call expressions we introduce a help function CGstore :

CGstore : Operand → Data Destination → Control Destination → Code

It takes a source operand, a data destination and a control destination, stores the source in the
data destination and transfers control as necessary to the control destination. In the simplest case,
where the data destination is effect and the control destination is a label, CGstore ignores the source
and uses CGjump to generate a branch if necessary:

CGstore O effect L ⇒
CGjump L
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If the data destination is effect and the control destination is a pair of labels, the source is tested
to set the condition codes and CGbranch is used to generate a conditional branch instruction:

CGstore O effect (Ltrue , Lfalse) ⇒
〈〈 tstl ↑O 〉〉
CGbranch (〈〈 jneq 〉〉, Ltrue) (〈〈 jeql 〉〉, Lfalse)

If the data destination is a location a store instruction is generated before the use of CGbranch or
CGjump :

CGstore O A L ⇒
〈〈 movl ↑O,↓A 〉〉
CGjump L

CGstore O A (Ltrue , Lfalse) ⇒
〈〈 movl ↑O,↓A 〉〉
CGbranch (〈〈 jneq 〉〉, Ltrue) (〈〈 jeql 〉〉, Lfalse)

Variable or integer references are handled by calling CGstore directly:

CG [[var x ]] (Lbreak ,m) δ γ ⇒
CGstore (m[[ x ]]) δ γ

CG [[ int n ]] ρ δ γ ⇒
CGstore n δ γ

The CG function for call adheres to the VAX calling conventions, which requires argument values
to be pushed onto the stack in reverse order. After code for the call has been generated CGstore is
called with the accumulator as a source location:

CG [[ call f E1 . . . En ]] ρ δ γ ⇒
CG [[ En ]] ρ stack Ln

Ln:
...

CG [[ E1 ]] ρ stack L1

L1:
〈〈 calls $n, f 〉〉
CGstore ac δ γ

The binary arithmetic operations are handled much like binary relational operations, except
here a location data destination is the norm rather than the exception. If the data destination is
effect rather than a location, it is simplest to use the accumulator as a temporary location:

CGbinop [[ arithop ]] A1 A2 effect γ ⇒
CGbinop [[ arithop ]] A1 A2 ac γ

If the data destination is a location and the control destination is a single label, CGjump is called
to generate a jump if necessary, as in the following example for subtraction:

CGbinop [[− ]] A1 A2 A3 L ⇒
〈〈 subl3 ↑A2,↑A1,↓A3 〉〉
CGjump L
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Otherwise, if the control destination is a pair of labels, CGbranch is called to generate a branch:

CGbinop [[− ]] A1 A2 A3 (Ltrue , Lfalse) ⇒
〈〈 subl3 ↑A2,↑A1,↓A3 〉〉
CGbranch (〈〈 jneq 〉〉, Ltrue) (〈〈 jeql 〉〉, Lfalse)

4 Conclusions

Destination-driven code generation is a simple technique for generating efficient target code directly
from abstract syntax trees. The abstract syntax trees received as input by a destination-driven
code generator may be produced directly by the front end of a compiler, or they may be the result
of earlier code improvement and register allocation passes that operate on intermediate forms of
the abstract syntax trees produced by the front end. We envision a compiler back end in which
each of the intermediate passes between the front end and the code generator are optional. Each
pass takes as input a given language of abstract syntax trees, possibly with annotations resulting
from data or control flow analysis, and produces (presumably) equivalent programs in the same
language. The speed of the compiler and the quality of the code generated depends on which of
the optional passes, if any, are selected.

It is useful to include a simplification prepass that reduces the size and complexity of the
language. This prepass can perform many of the transformations described in this article, not only
simplifying the code generator but also simplifying the intermediate, optional passes between the
simplification prepass and the code generator.

The code generator described in Section 3 creates temporary stack locations for some complex
arithmetic subexpressions occurring in value contexts. A better solution is to introduce temporaries
during the simplification prepass. The resulting language of abstract syntax trees would contain no
doubly-nested subexpressions, and all variables, whether present in the source or introduced by the
compiler, would be recorded in the appropriate fields of the fundecl construct. By separating the
introduction of temporaries from the allocation of locations it becomes possible to do live analysis
and splitting of temporaries, followed by register allocation and assignment, before code generation.

It is often desirable to arrange the code for a while loops so that the test expression follows
the loop body. This can result in one fewer instruction (a branch “not taken”) in the loop. It is
not difficult to do so within the framework we have described, but it does require the insertion of a
jump instruction immediately before the while loop to the test expression. This jump instruction
is redundant when the while loop is the target of a jump instruction. Also, the code for nested
if expressions, i.e., if expressions whose test expressions are themselves if expressions, sometimes
contains redundant jumps, because our mechanism does not always result in the optimal ordering
of the code for the various subexpressions involved in nested conditional expressions. It is possible
to solve these problems by augmenting the code generator to return not only the code generated
by an expression but also the entry point into the code, which is now always assumed to be the
first instruction. Unfortunately, this cannot be made to work fully without introducing a second
pass to perform “back-patching” for loop exits, and these problems occur rarely enough in practice
that this additional effort is not clearly worth the cost.

While the use of a destination-driven code generator results in reasonable code without peephole
optimization, some opportunities for optimization at the target code level still exist. For example,
we have addressed instruction selection at the granularity of single instructions, and the choices
made will not be optimal for all machines. A peephole optimizer that recognizes certain machine-
dependent combinations of instructions may therefore be beneficial. Also, instruction scheduling
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employed to maintain good pipeline and cache behavior seems to make sense only at the target
code level. However, optimizations requiring data and control flow analysis are less likely to be
necessary when the target code is derived via destination-driven code generation, removing a source
of complexity and potential unreliability from the target code optimizer.

Destination-driven code generation provides a simple and economical paradigm for the con-
struction of syntax-directed code generators. The introduction of data and control destinations
allows a destination-driven code generator to communicate decisions about the placement of code
and data in a clear and concise manner. The destination-driven technique produces target code
that rarely contains unnecessary move or jump instructions. Furthermore, because the technique
is based upon a recursive, top-down traversal of an abstract syntax tree, destination-driven code
generation is highly intuitive and easily codified.

We have used destination-driven code generation techniques in the implementation of an incre-
mental optimizing compiler for the Scheme programming language that generates assembly code
“on the fly” for one of several architectures, including the VAX, MC68000, MC88000, and SPARC.
The code generator is parameterized by a table of machine-specific code generators for various
low-level operations.
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