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Abstract

This paper describes a storage management system that is flexible and efficient. The represen-
tation of run-time tags yields fast allocation, type testing, and field extraction, and the memory
model reduces virtual memory paging during garbage collection. The storage management sys-
tem coexists gracefully with other languages’ run-time systems, facilitating the use of multiple
languages within a single program. No special support from the operating system or virtual
memory manager is required beyond the ability to obtain additional memory on demand. The
system incorporates a generational garbage collector with a tunable number of dynamically
resizable generations. The collector handles large objects efficiently, supports collection of in-
crementally compiled code, supports weak pairs, and allows stacks to contain nonpointer data.
The system’s hybrid type representation employs typed pointers and typed objects for tagging
individual objects, and BIBOP typing for classifying objects according to coarser-grained type
characteristics mostly of concern only to the collector. A segmented memory model is used, but
segmentation is handled transparently outside of the collector so that nearly all types of objects
are allocated inline from a single linear allocation area using a single allocation pointer. The
storage management system has been implemented and is in use as part of a high-performance
production implementation of Scheme.

1 Introduction

Nearly all implementations of Scheme, Common Lisp, Smalltalk, ML, and similar high-level lan-
guages provide automatic reclamation of storage occupied by dynamically allocated objects that
have become inaccessible. Implementations of these languages intended for production use must
provide the best possible speed and use as little physical memory as possible; yet they must support
objects of arbitrary size, dynamically resize the heap as needed, and coexist with other languages’
run-time systems within the same process image. If the implementation is to be portable, it must
also be able to cope with different operating systems and the ways in which they divide up the
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address space. In particular, a portable implementation must not expect memory to be parceled
out in a strictly linear fashion and must be prepared to separate dynamically loaded executable
code from data. This paper describes a storage management system with a generational copying
garbage collector designed to meet these requirements.

Many copying-collector-based storage management systems employ a “flat” memory model in
which the heap is assumed to be a contiguous array of memory locations. If a nongenerational
collector is used, the heap is subdivided into two equal-sized spaces; otherwise, the heap is divided
into three or more spaces. Heap allocation using this model can be as fast as stack allocation [1],
since all objects can be allocated from a single allocation pointer kept in a register. Sophisticated
versions of this model have been described that allow the spaces to be resized during collection and
which, unlike most copying collectors, avoid touching all of memory on each collection cycle [2, 18].

In many ways, the flat memory model is the simplest and most efficient model to use for
automatic storage management. The flat memory model, however, does not cope well with holes
in the memory image caused by allocation requests from other languages’ run-time systems and
operating systems that do not parcel out memory in a strictly linear fashion. The flat memory
model also complicates separation of read-write data from incrementally compiled or dynamically
loaded executable code, as required by most modern architectures. It also places additional burdens
on the collector when type tags are stored with pointers to objects rather than with the objects
themselves: special tags must be added to objects when the objects are copied by the collector so
that the objects can be swept correctly.

The system described in this paper, therefore, makes use of the Big Bag of Pages (BIBOP)
typing mechanism, which views memory as a group of equal-sized segments with an associated
type table mapping segment numbers to types [20]. BIBOP typing has fallen into disfavor in recent
years because newer type systems provide faster allocation and type manipulation and because
of percevied problems with the handling of large objects. We have found, however, that these
problems can be eliminated through the use of a hybrid typing system.

In our system, fast primary typing is provided by associating tags with pointers to objects (for
most common types) or with the objects themselves. Secondary typing, or metatyping, is provided
by the BIBOP type table. Metatypes allow the system to mark segments according to certain
important characteristics. In particular, segments are marked as “holes” if they are contained
within the heap but are not logically part of the heap, and they are marked “executable” if they
contain executable code. Segments are also marked according to how the objects within them
must be handled by the garbage collector, i.e., objects containing no pointers to be swept, objects
containing only pointers, and objects such as stacks which require customized sweeping are all kept
in different kinds of segments. The generation to which each segment belongs is also recorded
as part of a segment’s metatype. Immutable objects can be separated from mutable objects to
improve virtual memory behavior and to reduce the number of areas for which the generational
garbage collector must look for pointers from older to younger generations.

In order to keep objects segregated, BIBOP requires the use of multiple allocation pointers. This
would seem to prevent us from using the fast allocation strategy possible with the flat memory
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model. Our system delays drawing most metatype distinctions, however, until after an object
survives its first collection so that new objects may be allocated into a single allocation area1.
Thus, we can use a single allocation pointer for nearly all types of objects.

The segmented memory model would also seem to complicate the handling of large objects,
but this is not the case. Objects larger than one segment in length are simply allowed to span
segment boundaries. Since metatype information is stored in a separate table rather than within
the segments themselves, the handling of large objects creates no particular problems. In fact,
the segmented model allows us to avoid copying large objects during garbage collection; doing so
involves little more than changing the segment’s metatype information. Since our segments are
relatively small (currently 4K bytes), objects need not be extremely large to benefit from this
optimization.

The storage management system described in this paper has been implemented and is in use
as part of Chez Scheme, a high-performance implementation of Scheme [8]. Although hybrid
typing mechanisms and segmented memory models are not entirely new, we believe we are the
first to implement a segmented memory model using an extensive set of metatypes with fast inline
allocation. Also, many of the purposes for which we use metatypes appear to be unique, including
separating code from data and separating mutable from immutable data. Our mechanisms for
collecting stacks and code objects, which both contain a mix of pointer and nonpointer data, are
also new2 (see Section 5.3). We also describe a variant of card marking [19, 25] for remembering
pointers from older generations to newer ones. This variant allows us to perform the marking inline
while maintaining a record of the youngest generation involved, reducing card sweeping overhead
when more than two generations are used. Many of the other features and derived benefits we
discuss, e.g., how our storage manager coexists with other languages’ run-time systems, are likely
not new but either have not been well documented in the literature or have not previously been
implemented.

The remainder of the paper is organized as follows. Section 2 discusses background information
on run-time object representation and tags. Section 3 presents the basic framework of our storage
management system. Section 4 describes some of the benefits derived from the segmented memory
model. Section 5 describes how the system exploits metatype distinctions. Finally, Section 6
summarizes the paper and discusses related work.

2 Type Representation

There are several common mechanisms for dynamic allocation and typing of objects [21]. The
simplest representation is that provided by typed objects, in which the type tag is stored explicitly
within the object.

The pointer to the object carries no information other than the object’s location. All objects
are stored indirectly, even those which have a potentially compact representation such as integers
or characters. To determine an object’s type, a memory reference is required to extract the tag

1Code objects and weak pairs are distinguished immediately; see Section 3.
2Our handling of stack frames is somewhat similar to tagless garbage collection methods [3].

3



from the object. Typed objects can easily accomodate a large number of tags as the object can
simply be made larger to increase the size of the tag.

With typed pointers the type tag is included within the pointer to the object. The type tag
is typically stored in either the high or the low bits of the pointer, with the rest of the pointer
representing the actual address of the object. Storing the tag in the high bits usually restricts the
available address space, whereas storing the tag in the low bits usually forces objects to be aligned
on multiple byte boundaries. In either case, determining the type of an object requires extracting
the tag from the pointer.

The typed pointer representation allows faster type checks than with typed objects, as the
pointer need not be dereferenced to extract the tag. If the object is reached without going through
the pointer, however, its type cannot be determined since the tag is stored apart from the object.
This happens, for example, during the sweep phase of a breadth-first copying garbage collector [10].
One solution to this problem is to require the garbage collector to insert type descriptors as it copies
objects, while their types are still available.

Some types of objects, e.g., fixnums and characters, can be encoded in a small number of bits.
With typed pointers, these immediate objects may be stored within the pointer in place of the
address bits. This eliminates the storage overhead and indirect access for this common form of
value.

When some object alignment is enforced, some of the low bits of an object’s address carry no
useful information. For example, if objects are allocated only on even eight-byte boundaries, the
three lower bits of any object’s address will always be zero. This is a convenient place to store the
type tag of a typed pointer. With this representation, masking is usually not required to access
the object. Because of the tag, the pointer will always be a known constant away from the object’s
true address, so the pointer may simply be adjusted before loading or storing the object contents.
By using the known constant to adjust the field offset for the field being referenced, the access may
be done with little or no extra cost [18, Chapter 3].

To use typed pointers with the tag in the high bits, address extraction is more complicated
for most platforms. Some architectures have a word size larger than the address size and ignore
the upper bits for addressing purposes so that the tag may be safely stored in these bits without
affecting the address. On most modern platforms, however, the word size matches the address
size, so that a high-bit tag will involve the most significant bits of the address. The pointer cannot
simply be adjusted by some constant to compensate for the tag unless the address space is restricted
only to the lower (non-tag) address bits. For such architectures, the address must be stored in the
lower bits and shifted up to allow full use of the address space.

On the other hand, these bits could be used as part of the address. In this case, the address space
is divided into several distinct type regions, with objects of the same type being allocated into the
same region [13]. This separation removes the need for type descriptors during garbage collection
as object type may be determined by address. Each object type is assigned a type region with
its own allocation pointer. As object type depends on enforcement of these divisions, the region
boundaries may not change at run time, even for programs with allocation skewed toward some
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particular types. Object allocation will be more “sparse” than in the other approaches, negatively
impacting virtual memory managment on some architectures and operating systems. Immediate
values may be encoded as for typed pointers, but as these values correspond to virtual addresses,
portions of the address space will be made unavailable.

The BIBOP typing mechanism [20] also employs a representation in which the object’s type is
determined by the high bits of its address. Rather than encoding a type tag, however, these bits
represent an index into a table where the type is stored. Memory is divided into segments of equal
size, each with an entry in the type table, and all objects allocated in a segment are of the same
type. The high bits of an object’s address thus represent the number of the segment on which it
resides, and the low bits the offset from the segment base. The table lends flexibility to the type
system. Unlike the fixed boundaries of the high tagged typed pointer mechanism, type regions
are dynamically resizable as segments may be mapped to different purposes as needed by simply
adjusting the table entries. Space need not be reserved for a type until an object of that type is
first allocated, so unused types place no storage burden on the system. On the other hand, type
checks require an extra memory reference since they must access the type table.

Both BIBOP and high tagged typed pointers require separate allocation pointers for each object
type. In general, a register cannot be dedicated to each type. A few of the common cases may be
kept in registers, but the rest must be stored in memory.

Typed objects and low tagged typed pointers do not require this separation. Objects of different
type may be allocated in succession, so only a single allocation pointer is needed. By keeping this
in a dedicated register, allocation can be made very quick [1].

An excellent survey of automatic storage reclamation techniques for dynamically allocated ob-
jects is provided by Wilson [24].

3 Storage Management Framework

Our storage management system employs a hybrid run-time tagging mechanism that incorporates
elements of typed pointers, typed objects, and BIBOP typing (see Figure 1). Low tagged typed
pointers are used for primary typing. This permits fast typing and compact representations both
for a small number of commonly used object types, such as pairs and symbols, and for commonly
used immediate values, such as fixnums and characters. All objects are allocated on eight-byte
boundaries allowing the low three bits to be used as a type tag. Low-tagged pointers incur little
or no run-time overhead for allocation, integer arithmetic, and field dereference, and type testing
involves only a mask and compare [21].

Using a larger tag (and a correspondingly coarser alignment boundary) would result in increased
storage fragmentation to maintain the object alignment restriction. Three tag bits, however, do
not suffice to encode all Scheme object types. All types not representable as primary types are
represented as typed objects using one of the primary type tags as an escape code. The resulting
hybrid type system is extensible, and it allows fast compact type representations for the most
common object types. Some type checking overhead for variable-length typed objects can be
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Figure 1. This figure summarizes the key features of our storage management system. The primary type
mechanism uses typed pointers. The lower 3 bits of each immediate value or pointer are reserved for type
tags (all objects are aligned on 8-byte boundaries). One of the primary types is reserved as an escape to
a secondary typed object mechanism. The address field of each pointer is logically divided into a segment
number and offset. The segment number indexes both the segment table and dirty vector; each entry
corresponds to a 4K heap segment. For the purpose of younger object reference tracking, each segment is
logically divided into four 1K cards and each card is associated with a dirty byte in the appropriate word
of the dirty vector. Dirty bytes are initialized to a fixed value (the maximum generation number) so that
the dirty vector can be swept a word at a time. A dirty byte is changed to zero when an assignment occurs
and reset by the collector to reflect the lowest generation number of any object actually pointed to from the
card. The metatype field contains three subfields (not shown): a large-object flag, an old-space flag used
during collection, and a general metatype tag.
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hidden by combining the length (which often must be loaded anyway for range checking) and type
tags using techniques similar to typed-pointers.

BIBOP typing is used to associate metatype information, including generation numbers (and
dirty bytes; see Section 5.1), with groups of objects on a per-segment basis. Metatype information
is recorded in a segment table. This allows objects to be segregated by characteristics, rather than
by types. This in turn allows the storage management system to specialize its treatment of objects
for performance, behavior, handling, or other reasons.

BIBOP-style segmentation requires that a separate allocation pointer be used for each metatype.
Placement into specific metatype areas is delayed for most objects, however, until the objects reach
their first collection, at which point the collector decides to which metatype each object belongs.
New objects may therefore be allocated into a single allocation area. The new allocation area is
simply a set of one or more contiguous segments set aside for this purpose by setting their metatypes
to “new” in the segment table.

New allocation is performed inline using a single allocation pointer, held in a machine register
when possible, pointing to the next available location. Allocation then requires only a register move
and increment for each group of objects allocated, as well as a check for overflow of the allocation
area. This check is made by comparing the allocation pointer with an “end-of-allocation” pointer,
also held in a machine register when possible. The check need not be made for every allocation
operation, but instead may be made once for each entry (or reentry) into a procedure. Where
sufficient operating system support is available and trapping overhead is not too great, the first
page beyond the new allocation area could be marked read-only so that attempts to write into it
result in a trap [1]. In order to use this trick, the compiler must assure that at least one word per
page in the object is written before the allocation operation is assumed to have succeeded. Because
explicit checks have not been a performance problem in practice, our system currently uses explicit
checks regardless of the operating environment.

Two types of objects, weak pairs and code objects, are not allocated into the same new allocation
area as other objects. Code objects are kept separate to avoid intermixing read-write data with
instructions, as required by some architectures and operating systems. Weak pairs are separated
from normal pairs, since they must be handled differently by the garbage collector (see Section 5.4).
Since most programs do not allocate many weak pairs or code objects, the additional overhead
required to extract their allocation pointers from memory is not a serious problem.

As noted above, the garbage collector performs metatype separation for objects of other types.
Any newly allocated object found reachable by the collector is copied into a segment of the appro-
priate metatype. Since the information required to determine the appropriate metatype (usually,
just the object’s primary type) is generally needed as well to copy the object, this responsibility
adds little overhead to the collector.

Since metatypes are dynamically resized, they are unlikely to be held in contiguous memory
segments. More likely, they will be spread across the heap. To aid the garbage collector, a pointer
at the end of each segment links it to the next logical segment in the metatype. In addition,
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a sweep pointer and a pointer to the first segment of each metatype—along with the allocation
pointer already mentioned—are kept for each metatype within each generation.

Some fragmentation is possible. When the allocation of an object into a metatype requires more
space than is available, the metatype must be extended. Allocation continues in the extension,
wasting any remaining space. To offset the effects of fragmentation, a small segment size is used
(4K bytes in the current implementation). This does not limit the maximum size of an object since
objects may span segment boundaries, but it does lower the number of bytes which may be lost to
fragmentation. In practice, fragmentation is not a problem.

When further segments are needed the heap is extended through an operating system request,
e.g., the Unix sbrk call. The segment table representation must be able to handle such extensions.
There are several options. A fixed-size table could be used, allowing no more than some fixed
maximum number of heap segments. Such a table would need to be excessively large to handle
extreme cases—negatively impacting small applications. Limiting its size, however, would disallow
use of the entire address space. A more flexible option is to include each segment’s metatype
information as a record or tag in the segment itself. Then the table will extend naturally whenever
a segment is added. This approach, however, does not allow objects to span segment boundaries
without seriously complicating the mechanism. Worse yet, the locality of type records will be
significantly worse than with a compact, separate table. To scan even a small portion of the
segment table, potentially many pages must be brought into main memory and the cache. A full
scan of the segment table would touch every segment in the heap—for a relatively small amount of
information.

To get both good locality and flexibility, a resizable table is maintained instead. A small number
of segments are set aside to hold the segment table at system startup and more segments added
as the heap outgrows the table. These segments must be contiguous to allow fast table indexing
based on an object’s address, so table relocation is sometimes necessary during table resizing if the
next contiguous segment is not available.

4 Flexibility of the Memory Layout

By employing a segmented memory layout, the storage management system gains a great deal
of flexibility. Total heap size is limited only by available virtual memory, as are the sizes of
individual metatypes (including generations). The storage management system can dynamically
resize metatypes by adding or removing segments as needed, and, if a metatype is unused, it requires
no space. Because objects may span segment boundaries, there is also no inherent limit on object
size.

The ability to dynamically resize metatypes is especially effective when combined with a copying
garbage collector. With a conventional copying collector, the heap is divided into two semispaces,
with one used for allocation and the other reserved for garbage collection. The collector copies all
reachable objects from the first semispace to the second, then switches their roles. As the virtual
memory pages of the reserved semispace are unused until garbage collection, however, they are all
less likely to be in physical memory than any of the pages of the allocation space. This leads to
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a cyclic page access pattern which can have devastating effects on platforms with virtual memory.
If there are N pages in each semispace, 2N pages will be used each complete allocation/collection
cycle.

With a segmented memory layout, however, it is not necessary to reserve memory for the new
space in advance. As objects are copied, the corresponding metatypes are dynamically resized as
needed. So, if the reachable objects cover a total of M pages, only M +N pages are required during
each allocation/collection cycle. If collection is successful, M will tend to be much smaller than N

and many fewer pages will be required than in the basic model, although fragmentation for unused
portions of some segments may raise the total somewhat. More importantly, once collection is over,
the segments just vacated can be recycled immediately for new allocation while they still reside in
physical memory. These effects are also noted by Hudson [17].

Allocation by other run-time systems is easily handled through metatyping. If, during heap
extension, the memory returned by the operating system is not contiguous with the rest of the
heap, the intervening memory must be avoided as it may used by subprograms written in other
languages running within the same process image. These segments are marked as metatype “hole”
in the segment table and are not touched by the collector or used for allocation. These segments
fragment the heap somewhat, but they do not otherwise affect the system.

Objects may be allocated directly into any metatype at any time. Consequently, objects may
easily be allocated directly into older generations. This feature is exploited by our I/O subsystem,
which must sometimes enlarge the buffer associated with a string output port (a string-based output
file). Rather than allocate the new buffer in the youngest generation, it is allocated in the same
generation as the port. This allows us to pretend that the port contains no mutable pointers so
that we can avoid remembering the potential older to younger generation pointer.

The organization of the metatype system allows the use of any number of metatypes with mini-
mal changes to the run-time system. This greatly facilitates experimentation, since new metatypes
can be added or existing ones altered (along with their handling routines) without significantly
affecting the rest of the system. For example, the generational garbage collector supports an arbi-
trary number of generations. More generations may be added by simply increasing the number of
valid values for the generation field of the segment table, and modifying certain garbage collection
routines to recognize and use these new values.

5 Metatyping Applications

The segmented memory model allows us to separate objects by whatever characteristics we choose.
Although some metatypes map to individual object types, a one-to-one correspondence between
metatypes and object types is not needed in many cases. For example, the collector can make
use of the segregation of objects that contain pointers from those that do not, but the collector
would have little use for a separation of bignums from ratnums. Some metatype information, such
as generation numbers, does not correspond to object type in any way. A segment’s generation
number is orthogonal to other metatype information, so each generation may encompass segments
of many different metatypes.
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In the remainder of this section we describe some of the applications for which metatypes are
used in the current implementation.

5.1 Card marking

The card marking [19, 25] mechanism for tracking pointers from older generations to newer gen-
erations fits well with the BIBOP heap organization. The dirty marks used to record that an
assignment has occurred to an object within a card are simply another form of metatype informa-
tion to be tracked for each segment.

Our system uses bytes rather than bits to store the dirty marks for two reasons. First, it is
typically faster to write a byte than to set a single bit [9, Chapter 6]. Second, because the garbage
collector supports more than two generations, it is useful to know for each card the youngest
generation to which a pointer exists, rather than simply whether a pointer to some younger gener-
ation exists. Without this information, the collector would have to sweep every dirty card on each
collection, even if the card contains no pointers into the generations being collected.

This refined information is derived by the collector whenever it sweeps a dirty card; assignments
simply write a zero byte to the dirty vector, denoting the possibility that a pointer exists to the
youngest generation. Because assignments need only extract a card index from the address to
which the assignment is made, and write a byte to the dirty vector (which may be held in a
machine register) at this index, assignment operations need not be performed out-of-line and are
not unduly penalized.

In our system dirty marks are kept in a table separate from the segment information so that
each group of four bytes is 32-bit word aligned, allowing the collector to sweep the dirty vector a
word at a time. A byte set to the maximum possible generation number, ff16, denotes a totally
clean card, so the bit pattern ffffffff16 denotes four totally clean cards. (See Figure 1.)

5.2 Large object handling

Ungar notes that substantial gains may be made by treating large objects specially [22, 23]. In his
system, objects are reachable only through their headers. By keeping large objects in a separate
large object area, but leaving the headers in the same area as the small objects, copying costs for
large objects can be largely eliminated (though objects which may contain pointers must still be
scanned). The large object area is managed as a free list.

Hudson [17] also stores large objects in an area separate from the main heap, but does not
introduce the indirection required to go through an object header for Ungar’s mechanism. Instead,
the generation for each object is recorded with the object itself.

In both of these mechanisms, large objects are managed differently from other objects. In our
system, large objects merely span segment boundaries; this causes no particular difficulties and
no other special treatment is required. On the other hand, the segmented memory provides a
simple mechanism for avoiding the copying of large objects. Each large object is copied at most
once, when it is first collected, and placed alone into a group of contiguous segments. The first of
these segments is marked “large” in the metatype field of the segment table. When the collector
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encounters an object on a segment marked “large” during a subsequent collection, it merely marks
the object as having been forwarded by eliminating the old bit and updating its generation number
in the segment table, and places the object on a queue for later sweeping (if necessary).

For newly allocated objects that do not fit within the current new allocation area, the “large”
determination is made immediately, rather than at the first collection, in which case the object
need never be copied. This will always be the case for objects larger than the initial new allocation
area.

5.3 Sweeping based on metatypes

As noted in the introduction, metatyping can be used to distinguish objects that contain pointers,
like pairs and vectors, from those that do not contain pointers, like strings and bignums. For objects
that do not contain pointers, the collector can avoid unnecessary sweeping if such objects are kept
separate from those that can contain pointers.

As pointers from older to younger objects must be recorded to allow the generational garbage
collector to locate portions of the older generation to sweep, it is useful to further divide the pointer-
containing objects into those which are read-only and those which may both be written as well as
read. Since younger object references can be caused only by assignment operations, tracking is
necessary only for writable pointer-containing segments. With a card marking system such as the
one described in Section 5.1, this allows the collector to completely avoid touching objects that
cannot contain pointers to younger objects when scanning dirty cards.

Code objects are given their own metatype because they contain binary data (instructions) as
well as embedded pointers. These pointers must be swept by the garbage collector. So that the
collector can find these pointers, the location of each pointer in the code is recorded in a relocation
table associated with each code object. An entry in the relocation table specifies where a pointer is
stored (the code offset), the offset from the start of the pointer to the actual address stored there
(the item offset), and how the pointer is stored (the addressing mode). A pointer to the code object
stored in the relocation table header is not updated to point to the new code object until after the
pointers embedded in the code object have been swept; this is used during collection to compute
the displacement from the old location of the object to its new location so that any PC-relative
displacements can be recomputed.

Stack objects are also given their own metatype. Stack objects may contain nonpointer data
such as floating point values and possibly “holes” (caused by “dead” variables or introduced for
alignment) as well as live pointers. A live-pointer mask is associated with each frame by placing it
behind the return point in the instruction stream (see Figure 2). The collector uses this mask to
determine which frame locations need to be swept. Return addresses found in each frame represent
untagged pointers into the middle of code objects; these return addresses must be treated specially
as well. The code object offset is stored with the live-pointer mask behind the return point so that
the code object can be relocated and the updated return address computed. Stacks are “walked”
by the collector using frame size information also stored behind the return point [16].
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Figure 2. Our compiler stores three words in the code stream behind each return point: the frame size, the
live-pointer mask, and the code object offset. These fields allow the collector to “walk” the stack without
the need for an explicit frame link placed in the stack dynamically by the procedure call code; to sweep only
those stack locations that contain live pointers; and to locate and forward the code objects into which the
return addresses point. For large frames the live-pointer mask is a pointer to a variable-length heap-allocated
mask.

The live-pointer mask is similar to the type descriptors required to support tagless garbage
collection [3].

5.4 Weak pairs

Weak pairs are identical to normal pairs except that they have a weak car field pointer. A weak
pointer to an object is treated like a normal pointer so long as nonweak pointers to the object
exist. If only weak pointers to an object exist, however, the pointers are “broken” by the garbage
collector and the object is released. As a result, an object that is not accessible except by way of
weak pointers is ultimately discarded. In this case, a known value, such as false, is left in the car

field to indicate the loss.
Like code objects, weak pairs are segregated from other objects when they are allocated because

they require special treatment by the garbage collector [11]. They are identical in every other way
to normal pairs. If this were not the case, i.e., if we had chosen to use a different representation
for weak pairs, all pair manipulation primitives would have to operate on both representations,
resulting in undue overhead and complexity.

6 Conclusions and Related Work

In this paper we describe the design and implementation of a high-performance storage manage-
ment system that is portable and that provides a flexible metatyping mechanism. This storage
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management system is used by Chez Scheme [8] on a variety of architectures under several operat-
ing systems with widely varying capabilities.

Use of the segmented memory model and BIBOP metatyping results in no overhead outside of
the garbage collector. Scheme code compiled for the segmented model is identical to that which
would be produced for a flat memory model, with fast inline allocation and fast type testing. The
collector incurs some overhead for maintaining the segment table and a slightly higher per-object
copying cost because of the need to maintain multiple allocation pointers. This cost can be offset
somewhat by dedicating registers to hold the allocation pointers of the most common metatypes
during collection. Some fragmentation within segments is possible, although as we noted earlier
this is not a problem in practice. The memory required to hold the segment table is minimal: only
a few bytes per (4K byte) segment.

Added overhead in the collector is also offset by several optimizations not possible in a flat heap
structure. The garbage collector avoids unnecessary sweeping by separating objects that might
contain pointers from those that cannot, and from containing mutable objects from immutable
objects. Executable code and data stored in the heap are placed on different pages, reducing cache
flushing costs when code objects are created or relocated. Copying costs during garbage collection
are eliminated for large objects without the need to treat them specially when they are allocated.

The segmented memory model also yields better virtual memory behavior than the standard n-
space memory model, as vacated pages are reused immediately after garbage collection. Appel [2]
and Shaw [18, Chapter 6] have independently described a generation-based collector for a flat
memory model with the same property.

A possible extension of this work is to allow the compiler to use the metatyping mechanism to
customize collector behavior at a much finer granularity in order support tagless garbage collection.
For statically typed languages, like ML, type tags are required only for collection. Appel [3] has
suggested associating a record describing the types of the frame elements with each activation
record. Goldberg [14, 15] subsequently noted that the compiler could generate code the collector
invokes directly rather than a record the collector must interpret. In either case, type information
is determined only during the tracing phase of a collection. In order to use a nonrecursive breadth-
first collector the type must be associated with the object during collection, although, as Appel [3]
notes, the types can be stored separately from the objects, swept in parallel, and discarded after
the collection.

Our metatyping mechanism provides an alternative solution. Objects of the same type can
be segregated when they survive their first collection and assigned a metatype that enables the
collector to collect such objects. Because ML allows a program to define an unlimited number of
types and because there may only be a few objects of a given type, this approach may result in
significant fragmentation. Fragmentation can be reduced, however, by using a hybrid approach;
the most common types can use the metatyping mechanism to avoid tagging overhead while less
common types can be placed with their tags into a shared metatype. The distinction between
common and uncommon types might be made dynamically based on actual object counts.
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In his book, Compiling with Continuations, Appel [4, page 211] makes a similar observation. He
notes that with BIBOP typing for older generations, type tags can be removed from objects that
survive their first garbage collection and associated with segments instead. Although he does not
make the observation that this idea can be applied to tagless garbage collection, the generalization is
fairly obvious. He does not mention how he would handle fragmentation caused by the proliferation
of types. This fragmentation could be especially serious with the large segment size he suggests
(64K bytes).

Like our storage management system, the language-independent garbage-collection toolkit de-
scribed by Hudson [17] divides memory up into segments (called blocks). They do so in order to
reduce memory demand (compared to a standard semi-space collector) and to support a generation-
based collector with a varying number of generations of varying size. Large objects, however, are
placed in area separate from the main heap and are managed entirely differently from other ob-
jects. They mention the possibility of using a table constructed by the compiler to map the live
frame locations for the collector that is similar to the live-pointer mask mechanism that we have
implemented and described here. They do not mention using metatypes for segregating objects
based on characteristics, and they make no commitments with respect to typing or allocation since
their system is intended to be language-independent.

Bartlett’s “mostly copying” collector [5] uses a segmented memory layout similar to ours in
order to mark groups of objects pointed to by an ambiguous root set (whose values cannot be
modified) as “forwarded” so that they need not be copied. Later work [6] associates a generation
number with each segment as well. In addition, Bartlett’s Scheme->C implementation [7] uses
metatyping to separate pairs from variable length objects, in order to simplify sweeping, and to
mark segments as “continued” when an object spans a segment boundary so that the collector
can find the beginning of the object. Although his system supports fast inline allocation, doing so
is trivial since only two allocation pointers are required to handle the two metatypes his system
supports.

The page-based incremental collector described by Ellis [12] also uses a “boundary crossing”
table to enable the collector to find the beginning of an object that crosses page boundaries. This
can be seen as a simple use of metatyping.
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