
Syntactic Abstraction:

The syntax-case expander∗

R. Kent Dybvig
Indiana University

June, 2007

When writing computer programs, certain patterns arise over and over again.
For example, programs must often loop through the elements of arrays, incre-
ment or decrement the values of variables, and perform multi-way conditionals
based on numeric or character values. Programming language designers typ-
ically acknowledge this fact by including special-purpose syntactic constructs
that handle the most common patterns. C, for instance, provides multiple
looping constructs, multiple conditional constructs, and multiple constructs for
incrementing or otherwise updating the value of a variable [9].

Some patterns are less common but can occur frequently in a certain class
of programs or perhaps just within a single program. These patterns might not
even be anticipated by a language’s designers, who in any case would typically
choose not to incorporate syntactic constructs to handle such patterns in the
language core. Yet, recognizing that such patterns do arise and that special-
purpose syntactic constructs can make programs both simpler and easier to read,
language designers sometimes include a mechanism for syntactic abstraction,
such as C’s preprocessor macros or Common Lisp [11] macros. When such
facilities are not present or are inadequate for a specific purpose, an external
tool, like the m4 [8] macro expander, might be brought to bear.

Syntactic abstraction facilities differ in several significant ways. C’s prepro-
cessor macros are essentially token-based, allowing the replacement of a macro
call with a sequence of tokens with text from the macro call substituted for the
macro’s formal parameters, if any. Lisp macros are expression-based, allowing
the replacement of a single expression with another expression, computed in
Lisp itself and based on the subforms of the macro call, if any.

In both cases, identifiers appearing within a macro-call subform are scoped
where they appear in the output, rather than where they appear in the input,
possibly leading to unintended capture of a variable reference by a variable bind-
ing. For example, consider the simple transformation of Scheme’s or form [7]
into let and if below. (Readers unfamiliar with Scheme might want to read

∗This document appeared as a chapter of Beautiful Code: Leading Programmers Explain
How They Think, edited by Andy Oram and Greg Wilson and published by O’Reilly and
Associates in June 2007

1

the first few chapters of The Scheme Programming Language, 3rd edition [4],
which is available online at http://www.scheme.com/tspl3/.)

(or e1 e2) → (let ([t e1]) (if t t e2))

An or form must return the value of its first subform, if it evaluates to a true
(any non-false) value; the let expression is used to name this value so that it
is not computed twice.

The transformation above works fine in most cases, but it breaks down if
the identifier t appears free in e2 (i.e., outside of any binding for t in e2), as in
the expression below.

(let ([t #t]) (or #f t))

This should evaluate to the true value #t. With the transformation of or as
specified above, however, the expression expands to

(let ([t #t])
(let ([t #f])
(if t t t)))

which evaluates to the false value #f.
Once seen, this problem is easily addressed by using a generated identifier

for the introduced binding, i.e.:

(or e1 e2) → (let ([g e1]) (if g g e2))

where g is a generated (fresh) identifier.
As Kohlbecker, Friedman, Felleisen, and Duba observe in their seminal pa-

per on hygienic macro expansion [10], variable capture problems like this are
insidious, since a transformation might work correctly for a large body of code
only to fail some time later in a way that might be difficult to debug.

While unintended captures caused by introduced identifier bindings can al-
ways be solved by using generated identifiers, no such simple solution is available
for introduced identifier references, which might be captured by bindings in the
context of the macro call. In the following expression, if is lexically bound in
the context of an or expression.

(let ([if (lambda (x y z) "oops")]) (or #f #f))

With the second transformation for or above, this expression expands into:

(let ([if (lambda (x y z) "oops")])
(let ([g #f])
(if g g #f)))

where g is a fresh identifier. The value of the expression should be #f but will
actually be "oops", as the locally bound procedure if is used in place of the
original if conditional syntax.

Limiting the language by reserving the names of keywords such as let and
if would solve this problem for keywords, but it would not solve the problem
generally; the same situation can arise with the introduced reference to the
user-defined variable add1 in following transformation of increment:

2

(increment x) → (set! x (add1 x))

Kohlbecker, et al. invented the concept of hygienic macro expansion to solve
both kinds of capturing problems, borrowing the term “hygiene” from Baren-
dregt [1]. Barendregt’s hygiene condition for the λ-calculus holds that the free
variables of one expression substituted into another are assumed not to be
captured by bindings in the other, unless such capture is explicitly required.
Kohlbecker, et al. adapted this into the following hygiene condition for macro
expansion:

“Generated identifiers that become binding instances in the com-
pletely expanded program must only bind variables that are gener-
ated at the same transcription step.”

In practice, this requirement forces the expander to rename identifiers as neces-
sary to avoid unintended captures. For example, with the original or transfor-
mation,

(or e1 e2) → (let ([t e1]) (if t t e2))

the expression:

(let ([t #t]) (or #f t))

expands into the equivalent of:

(let ([t0 #t])
(let ([t1 #f])
(if t1 t1 t0)))

which properly evaluates to #t. Similarly, the expression:

(let ([if (lambda (x y z) "oops")]) (or #f #f))

expands into the equivalent of:

(let ([if0 (lambda (x y z) "oops")])
(let ([t #f])
(if t t #f)))

which properly evaluates to #f.
In essence, hygienic macro expansion implements lexical scoping with respect

to the source code, whereas unhygienic expansion implements lexical scoping
with respect to the code after expansion.

Hygienic expansion can preserve lexical scope only to the extent that the
scope is preserved by the transformations it is told to perform. A transformation
can still produce code that apparently violates lexical scoping. This can be
illustrated with the following (incorrect) transformation of let:

(let ((x e)) body) → (letrec ((x e)) body)

The expression e should appear outside the scope of the binding of the variable
x , but in the output it appears inside, due to the semantics of letrec.

3

The hygienic macro expansion algorithm (KFFD) described by Kohlbecker,
et al. is both clever and elegant. It works by adding a time stamp to each vari-
able introduced by a macro, then uses the timestamps to distinguish like-named
variables as it renames lexically bound variables. KFFD has some shortcom-
ings that prevent its direct use in practice, however. The most serious are a
lack of support for local macro bindings and quadratic overhead resulting from
the complete rewrite of each expression as time stamping and as renaming are
performed.

These shortcomings are addressed by the syntax-rules system, developed
by Clinger, Dybvig, Hieb, and Rees for the Revised4 Report on Scheme [2].
The simple pattern-based nature of the syntax-case system permits it to be
implemented easily and efficiently [3]. Unfortunately, it also limits the utility of
the mechanism, so that many useful syntactic abstractions are either difficult
or impossible to write.

The syntax-case system was developed to address the shortcomings of the
original algorithm without the limitations of syntax-rules [6]. The system
supports local macro bindings and operates with constant overhead, yet allows
macros to use the full expressive power of the Scheme language. It is upwardly
compatible with syntax-rules, which can be expressed as a simple macro in
terms of syntax-case, and it permits the same pattern language to be used
even for “low level” macros for which syntax-rules cannot be used. It also
provides a mechanism for allowing intended captures, i.e., allowing hygiene to
be “bent” or “broken” in a selective and straightforward manner. In addition, it
handles several practical aspects of expansion that must be addressed in a real
implementation, such as internal definitions and tracking of source information
through macro expansion.

This all comes at a price in terms of the complexity of the expansion algo-
rithm and the size of the code required to implement it. A study of a complete
implementation is therefore beyond the scope of this presentation. Instead, we
investigate a simplified version of the expander that illustrates the underlying
algorithm and the most important aspects of its implementation.

1 Brief introduction to syntax-case

We proceed with a few brief syntax-case examples, adapted from the Chez
Scheme Version 7 User’s Guide [5]. Additional examples and a more detailed
description of syntax-case are given in that document and in The Scheme
Programming Language, 3rd edition [4].

The definition of or below illustrates the form of a syntax-case macro
definition.

(define-syntax or
(lambda (x)
(syntax-case x ()
[(e1 e2)
(syntax (let ([t e1]) (if t t e2)))])))

4

The define-syntax form creates a keyword binding, associating a keyword (in
this case, or), with a transformation procedure, or transformer, obtained by
evaluating, at expansion time, the lambda expression on the right-hand side of
the define-syntax form. The syntax-case form is used to parse the input,
and the syntax form is used to construct the output via straightforward pattern
matching. The pattern (e1 e2) specifies the shape of the input, with the
underscore () used to mark where the keyword or appears and the pattern
variables e1 and e2 bound to the first and second subforms. The template
(let ([t e1]) (if t t e2)) specifies the output, with e1 and e2 inserted
from the input.

The form (syntax template) can be abbreviated #’template, so the defini-
tion above can be rewritten as follows.

(define-syntax or
(lambda (x)
(syntax-case x ()
[(e1 e2) #’(let ([t e1]) (if t t e2))])))

Macros can also be bound within a single expression via letrec-syntax.

(letrec-syntax ([or (lambda (x)
(syntax-case x ()
[(e1 e2)
#’(let ([t e1]) (if t t e2))]))])

(or a b))

Macros can be recursive, i.e., expand into occurrences of themselves, as illus-
trated by the following version of or that handles an arbitrary number of sub-
forms. Multiple syntax-case clauses are required to handle the two base cases
and the recursion case.

(define-syntax or
(lambda (x)
(syntax-case x ()
[() #’#f]
[(e) #’e]
[(e1 e2 e3 . . .)
#’(let ([t e1]) (if t t (or e2 e3 . . .)))])))

An input or output form followed by an ellipsis in the syntax-case pattern
language matches or produces zero or more forms.

Hygiene is ensured for the definitions of or above so that the introduced
binding for t and the introduced references to let, if, and even or are scoped
properly. If we want to bend or break hygiene, we do so with the procedure
datum->syntax, which produces a syntax object from an arbitrary s-expression.
The identifiers within the s-expression are treated as if they appeared in the
original source where the first argument, the template identifier, appeared.

We can use this fact to create a simple method syntax that implicitly binds
the name this to the first (object) argument.

5

(define-syntax method
(lambda (x)
(syntax-case x ()
[(k (x . . .) e1 e2 . . .)
(with-syntax ([this (datum->syntax #’k ’this)])
#’(lambda (this x . . .) e1 e2 . . .))])))

By using the keyword k, extracted from the input, as the template variable, the
variable this is treated as if it were present in the method form, so that:

(method (a) (f this a))

is treated as the equivalent of

(lambda (this a) (f this a))

with no renaming to prevent the introduced binding of this from capturing the
source-code reference.

The with-syntax form used in the definition of method creates local pattern-
variable bindings. It is a simple macro written in terms of syntax-case.

(define-syntax with-syntax
(lambda (x)
(syntax-case x ()
[(((p e0) . . .) e1 e2 . . .)
#’(syntax-case (list e0 . . .) ()

[(p . . .) (begin e1 e2 . . .)])])))

The datum->syntax procedure can be used for arbitrary s-expressions, as illus-
trated by the following definition of include.

(define-syntax include
(lambda (x)
(define read-file
(lambda (fn k)
(let ([p (open-input-file fn)])
(let f ([x (read p)])
(if (eof-object? x)

(begin (close-input-port p) ’())
(cons (datum->syntax k x) (f (read p))))))))

(syntax-case x ()
[(k filename)
(let ([fn (syntax->datum #’filename)])
(with-syntax ([(e . . .) (read-file fn #’k)])
#’(begin e . . .)))])))

The form (include "filename") has the effect of treating the forms within the
named file as if they were present in the source code in place of the include form.
In addition to using datum->syntax, include also uses its inverse operator,
syntax->datum, to convert the filename subform into a string it can pass to
open-input-file.

6

2 Algorithm overview

The syntax-case expansion algorithm is essentially a lazy variant of the KFFD
algorithm that operates on an abstract representation of the input expression
rather than on the traditional s-expression representation. The abstract repre-
sentation encapsulates both a representation of an input form and a wrap that
enables the algorithm to determine the scope of all identifiers within the form.
The wrap consists of marks and substitutions. Marks are like KFFD timestamps
and are added to the portions of a macro’s output that are introduced by the
macro. Substitutions map identifiers to bindings with the help of a compile-time
environment. Substitutions are created whenever a binding form, like lambda,
is encountered, and they are added to the wraps of the syntax objects represent-
ing the forms within the scope of the binding form’s bindings. A substitution
applies to an identifier only if the identifier has the same name and marks as
the substituted identifier.

Expansion operates in a recursive, top-down fashion. As the expander en-
counters a macro call, it invokes the associated transformer on the form, marking
it first with a fresh mark, then marking it again with the same mark. Like marks
cancel, so only the introduced portions of the macro’s output, i.e., those por-
tions not simply copied from the input to the output, remain marked. When a
core form is encountered, a core form in the output language of the expander
(in our case, the traditional s-expression representation) is produced, with any
subforms recursively expanded as necessary. Variable references are replaced by
generated names via the substitution mechanism.

3 Representations

The most important aspect of the syntax-case mechanism it its abstract repre-
sentation of program source code as syntax objects. As described above, a syntax
object encapsulates not only a representation of the program source code but
also a wrap that provides sufficient information about the identifiers contained
within the code to implement hygiene.

(define-record syntax-object (expr wrap))

The define-record form creates a new type of value with the specified name (in
this case, syntax-object) and fields (in this case, expr and wrap), along with
a set of procedures to manipulate it, in this case make-syntax-object, which
returns a new syntax object with the expr and wrap fields initialized to the
values of its arguments, syntax-object?, which returns true iff its argument
is a syntax object, syntax-object-expr, which returns the value of the expr
field of a syntax-objects, and syntax-object-wrap, which return the value of
the wrap field of a syntax object.

A complete implementation of syntax-case might also include, within each
syntax object, source information to be tracked through the expansion process.

7

Each wrap consists of a list of marks and substitutions. Marks are distin-
guished by their object identity and do not require any fields.

(define-record mark ())

A substitution maps a symbolic name and list of marks to a label.

(define-record subst (sym mark* label))

Labels, like marks, are distinguished by their identity require no fields.

(define-record label ())

The expand-time environment maintained by the expander maps labels to bind-
ings. The environment is structured as a traditional association list, i.e., a list
of pairs, each car of which contains a label and each cdr of which contains a
binding. Bindings consist of a type (represented as a symbol) and a value.

(define-record binding (type value))

The type identifies the nature of the binding, e.g., macro for keyword bindings
and lexical for lexical variable bindings. The value is any additional informa-
tion required to specify the binding, such as the transformation procedure when
the binding is a keyword binding.

4 Producing expander output

The expander’s output is a simple s-expression in the core language and is thus
constructed for the most part using Scheme’s quasiquote syntax for creating
list structure. For example, a lambda expression can be created with formal
parameter var and body body as follows:

‘(lambda (,var) ,body)

The expander does need to create fresh names, however, and does so via the
gen-var helper, which makes use of the Scheme primitives for converting strings
to symbols and visa versa, along with a local sequence counter.

(define gen-var
(let ([n 0])
(lambda (id)
(set! n (+ n 1))
(let ([name (syntax-object-expr id)])
(string->symbol (format "˜s.˜s" name n))))))

5 Stripping syntax objects

Whenever a quote form is encountered in the input, the expander must return
a representation of the constant contents appearing within the quote form. To
do this, it must strip away any embedded syntax objects and wraps, using the

8

strip procedure, which traverses the syntax-object and list structure of its
input and recreates an s-expression representation of its input.

(define strip
(lambda (x)
(cond
[(syntax-object? x)
(if (top-marked? (syntax-object-wrap x))

(syntax-object-expr x)
(strip (syntax-object-expr x)))]

[(pair? x)
(let ([a (strip (car x))] [d (strip (cdr x))])
(if (and (eq? a (car x)) (eq? d (cdr x)))

x
(cons a d)))]

[else x])))

Traversal terminates along any branch of the input expression when something
other than a syntax object or pair is found, i.e., when a symbol or immediate
value is found. It also terminates when a syntax object is found to be “top
marked,” i.e., it’s wrap contains a unique top mark.

(define top-mark (make-mark))

(define top-marked?
(lambda (wrap)
(and (not (null? wrap))

(or (eq? (car wrap) top-mark)
(top-marked? (cdr wrap))))))

When the expander creates a syntax object representing the original input, it
uses a wrap that contains the top mark at its base, specifically to allow the
stripping code detect when it has reached the syntax-object base and need not
traverse the object further. This feature prevents the expander from traversing
constants unnecessarily so that it can easily preserve shared and cyclic structure
and handle quoted syntax objects in the input.

6 Syntax errors

The expander reports syntax errors via syntax-error, which is defined below.

(define syntax-error
(lambda (object message)
(error #f "˜a ˜s" message (strip object))))

If the implementation attaches source information to syntax objects, this source
information can be used to construct an error message that incorporates the
source line and character position.

9

7 Structural predicates

The nonatomic structure of a syntax object is always determined with the pat-
terns of a syntax-case form. The predicate identifier? determines whether
a syntax object represents an identifier.

(define identifier?
(lambda (x)
(and (syntax-object? x)

(symbol? (syntax-object-expr x)))))

Similarly, the predicate self-evaluating? is used, after stripping a syntax
object, to determine if it represents a constant.

(define self-evaluating?
(lambda (x)
(or (boolean? x) (number? x) (string? x) (char? x))))

8 Creating wraps

A mark or substitution is added to a syntax object by extending the wrap.

(define add-mark
(lambda (mark x)
(extend-wrap (list mark) x)))

(define add-subst
(lambda (id label x)
(extend-wrap
(list (make-subst

(syntax-object-expr id)
(wrap-marks (syntax-object-wrap id))
label))

x)))

If the syntax object is only partially wrapped, the wrap is extended simply by
creating a syntax object encapsulating the partially wrapped structure. Other-
wise, the syntax object is rebuilt with the new wrap joined to the old wrap.

(define extend-wrap
(lambda (wrap x)
(if (syntax-object? x)

(make-syntax-object
(syntax-object-expr x)
(join-wraps wrap (syntax-object-wrap x)))

(make-syntax-object x wrap))))

Joining two wraps is almost as simple as appending the lists of marks. The only
complication is that two like marks must cancel when they meet, to support the
anti marking of the input and subsequent marking of the output (Section 11).

10

(define join-wraps
(lambda (wrap1 wrap2)
(cond
[(null? wrap1) wrap2]
[(null? wrap2) wrap1]
[else
(let f ([w (car wrap1)] [w* (cdr wrap1)])
(if (null? w*)

(if (and (mark? w) (eq? (car wrap2) w))
(cdr wrap2)
(cons w wrap2))

(cons w (f (car w*) (cdr w*)))))])))

9 Manipulating environments

Environments map labels to bindings and are represented as association lists.
Extending an environment therefore involves adding to the environment a pair
associating a label with a binding.

(define extend-env
(lambda (label binding env)
(cons (cons label binding) env)))

10 Identifier resolution

Determining the binding associated with an identifier is a two step process. The
first step is to determine the label associated with the identifier in the identifier’s
wrap, and the second is look the label up in the current environment.

(define id-binding
(lambda (id r)
(label-binding id (id-label id) r)))

The marks and substitutions that appear in an identifier’s wrap determine the
associated label, if any. Substitutions map names and lists of marks to labels.
Any substitution whose name is not the name of the identifier is ignored, as is
any whose marks do not match. The names are symbols and are thus compared
using the pointer equivalence operator, eq?.

The set of marks that are relevant are those that were layered onto the wrap
before the substitution. Thus the set of marks to which a substitution’s marks
are compared changes as the search through the wrap proceeds. The starting
set of marks is the entire set that appear in the wrap. Each time a mark is
encountered during the search for a matching substitution in the wrap, the first
mark in the list is removed.

11

(define id-label
(lambda (id)
(let ([sym (syntax-object-expr id)]

[wrap (syntax-object-wrap id)])
(let search ([wrap wrap] [mark* (wrap-marks wrap)])
(if (null? wrap)

(syntax-error id "undefined identifier")
(let ([w0 (car wrap)])
(if (mark? w0)

(search (cdr wrap) (cdr mark*))
(if (and (eq? (subst-sym w0) sym)

(same-marks? (subst-mark* w0) mark*))
(subst-label w0)
(search (cdr wrap) mark*)))))))))

If no matching substitution exists in the wrap, the identifier is undefined and a
syntax error is signaled. It would be possible instead to treat all such identifier
references as global variable references.

The id-label procedure obtains the starting list of marks via wrap-marks
and uses the same-marks? predicate to compare lists of marks.

(define wrap-marks
(lambda (wrap)
(if (null? wrap)

’()
(let ([w0 (car wrap)])
(if (mark? w0)

(cons w0 (wrap-marks (cdr wrap)))
(wrap-marks (cdr wrap)))))))

(define same-marks?
(lambda (m1* m2*)
(if (null? m1*)

(null? m2*)
(and (not (null? m2*))

(eq? (car m1*) (car m2*))
(same-marks? (cdr m1*) (cdr m2*))))))

Once a label has been found, id-binding is used to find the associated binding,
if any, using the assq procedure for performing association-list lookups. If an
association is found, the binding in the cdr of the association is returned.

(define label-binding
(lambda (id label r)
(let ([a (assq label r)])
(if a

(cdr a)
(syntax-error id "displaced lexical")))))

12

If no binding is found, the identifier is a “displaced lexical.” This occurs when a
macro improperly inserts into its output a reference to an identifier that is not
visible in the context of the macro output.

11 The expander

With the mechanisms for handling wraps and environments in place, the ex-
pander is straightforward. The expression expander, exp, handles macro calls,
lexical variable references, applications, core forms, and constants. Macro calls
come in two forms: singleton macro-keyword references and structured forms
with a macro keyword in the first position. The exp procedure takes three argu-
ments: a syntax object x , a run-time environment r , and a meta environment
mr . The run-time environment is used to process ordinary expressions whose
code will appear in the expander’s output, while the meta environment is used to
process transformer expressions, e.g., on the right-hand sides of letrec-syntax
bindings, which are evaluated and used at expansion time. The difference be-
tween the run-time and meta environments is that the meta environment does
not contain lexical variable bindings, since these bindings are not available when
the transformer is evaluated and used.

(define exp
(lambda (x r mr)
(syntax-case x ()
[id
(identifier? #’id)
(let ([b (id-binding #’id r)])
(case (binding-type b)
[(macro) (exp (exp-macro (binding-value b) x) r mr)]
[(lexical) (binding-value b)]
[else (syntax-error x "invalid syntax")]))]

[(e0 e1 . . .)
(identifier? #’e0)
(let ([b (id-binding #’e0 r)])
(case (binding-type b)
[(macro) (exp (exp-macro (binding-value b) x) r mr)]
[(lexical)
‘(,(binding-value b) ,@(exp-exprs #’(e1 . . .) r mr))]
[(core) (exp-core (binding-value b) x r mr)]
[else (syntax-error x "invalid syntax")]))]

[(e0 e1 . . .)
‘(,(exp #’e0 r mr) ,@(exp-exprs #’(e1 . . .) r mr))]
[
(let ([d (strip x)])
(if (self-evaluating? d)

d
(syntax-error x "invalid syntax")))])))

13

Macro calls are handled by exp-macro (below), then re-expanded. Lexical vari-
able references are rewritten into the binding value, which is a generated variable
name. Applications are rewritten into lists as in the traditional s-expression syn-
tax for Lisp and Scheme, with the subforms expanded recursively. Core forms
are handled by exp-core (below); any recursion back to the expression expander
is performed explicitly by the core transformer. A constant is rewritten into the
constant value, stripped of its syntax wrapper.

The expander uses syntax-case and syntax (in its abbreviated form, i.e.,
#’template) to parse and refer to the input or portions thereof. Since the ex-
pander is also charged with implementing syntax-case, this seems like a para-
dox of sorts, but in fact is handled by bootstrapping one version of the expander
using a previous version. The expander would be much more tedious to write
if syntax-case and syntax were not used.

The exp-macro procedure applies the transformation procedure (the value
part of the macro binding) and applies it to the entire macro form, which can
either be a single macro keyword or a structured expression with the macro
keyword at its head. The exp-macro procedure first adds a fresh mark to the
wrap of the input form, then applies the same mark to the wrap of the output
form. The first mark serves as an anti-mark that cancels out the second mark,
so the net effect is that the mark adheres only to the portions of the output
that were introduced by the transformer, thus uniquely identifying the portions
of the code introduced at this transcription step.

(define exp-macro
(lambda (p x)
(let ([m (make-mark)])
(add-mark m (p (add-mark m x))))))

The exp-core procedure simply applies the given core transformer (the value
part of the core binding) to the input form.

(define exp-core
(lambda (p x r mr)
(p x r mr)))

The exp-exprs procedure used to process application subforms simply maps
the expander over the forms.

(define exp-exprs
(lambda (x* r mr)
(map (lambda (x) (exp x r mr)) x*)))

12 Core transformers

Transformers for several representative core forms (quote, if, lambda, let, and
letrec-syntax) are described here. Adding transformers for other core forms,
like letrec and let-syntax, is straightforward.

14

The exp-quote procedure produces an s-expression representing a quote
form, with the data value stripped of its syntax wrap.

(define exp-quote
(lambda (x r mr)
(syntax-case x ()
[(d) ‘(quote ,(strip #’d))])))

The exp-if procedure produces an s-expression representation of an if form,
with the subforms recursively expanded.

(define exp-if
(lambda (x r mr)
(syntax-case x ()
[(e1 e2 e3)
‘(if ,(exp #’e1 r mr)

,(exp #’e2 r mr)
,(exp #’e3 r mr))])))

The exp-lambda procedure handles lambda expressions with only a single formal
parameter and only a single body expression. Extending it to handle multiple
parameters is straightforward. It is less straightforward to handle arbitrary
lambda bodies, including internal definitions, but support for internal definitions
is beyond the scope of this presentation.

When the s-expression representation of a lambda expression is produced,
a generated variable name is created for the formal parameter. A substitution
mapping the identifier to a fresh label is added to the wrap on the body, and
the environment is extended with an association from the label to a lexical
binding whose value is the generated variable, during the recursive processing
of the body.

(define exp-lambda
(lambda (x r mr)
(syntax-case x ()
[((var) body)
(let ([label (make-label)] [new-var (gen-var #’var)])
‘(lambda (,new-var)

,(exp (add-subst #’var label #’body)
(extend-env label
(make-binding ’lexical new-var)
r)

mr)))])))

The meta environment is not extended, since the meta environment should not
include lexical variable bindings.

The exp-let procedure that transforms single-binding let forms is similar
to the transformer for lambda, but slightly more involved.

(define exp-let
(lambda (x r mr)

15

(syntax-case x ()
[(([var expr]) body)
(let ([label (make-label)] [new-var (gen-var #’var)])
‘(let ([,new-var ,(exp #’expr r mr)])

,(exp (add-subst #’var label #’body)
(extend-env label
(make-binding ’lexical new-var)
r)

mr)))])))

The body is in the scope of the binding created by let, so it is expanded with
the extended wrap and environment. The right-hand-side expression, expr, is
not within the scope, so it is expanded with the original wrap and environment.

The exp-letrec-syntax procedure handles single-binding letrec-syntax
forms. As with lambda and let, a substitution mapping the bound identifier, in
this case a keyword rather than a variable, to a fresh label is added to the wrap
on the body, and an association from the label to a binding is added to the envi-
ronment while the body is recursively processed. The binding is a macro binding
rather than a lexical binding, and the binding value is the result of recursively
expanding and evaluating the right-hand-side expression of the letrec-syntax
form. In contrast with let, the right-hand-side expression is also wrapped with
a substitution from the keyword to the label and expanded with the extended
environment; this allows the macro to be recursive. This would not be done if
the form were a let-syntax form instead of a letrec-syntax form. The out-
put produced by expanding a letrec-syntax form consists only of the output
of the call to the expander on the body of the form.

(define exp-letrec-syntax
(lambda (x r mr)
(syntax-case x ()
[(((kwd expr)) body)
(let ([label (make-label)])
(let ([b (make-binding ’macro

(eval (exp (add-subst #’kwd label #’expr)
mr mr)))])

(exp (add-subst #’kwd label #’body)
(extend-env label b r)
(extend-env label b mr))))])))

Both the run-time and meta environments are extended in this case, since trans-
formers are available both in run-time and transformer code.

13 Parsing and constructing syntax objects

Macros are written in a pattern-matching style using syntax-case to match
and take apart the input and syntax to reconstruct the output. Implemen-
tation of the pattern matching and reconstruction is outside the scope of this

16

presentation, but the following low-level operators can be used as the basis for
the implementation. The syntax-case form can be built from the following set
of three operators that treat syntax objects as abstract s-expressions.

(define syntax-pair?
(lambda (x)
(pair? (syntax-object-expr x))))

(define syntax-car
(lambda (x)
(extend-wrap
(syntax-object-wrap x)
(car (syntax-object-expr x)))))

(define syntax-cdr
(lambda (x)
(extend-wrap
(syntax-object-wrap x)
(cdr (syntax-object-expr x)))))

The definitions of syntax-car and syntax-cdr employ the extend-wrap helper
defined in Section 8 to push the wrap on the pair onto the car and cdr.

Similarly, syntax can be built from the following more basic version of
syntax that handles constant input but not pattern variables and ellipses.

(define exp-syntax
(lambda (x r mr)
(syntax-case x ()
[(t) ‘(quote ,#’t)])))

In essence, the simplified version of syntax is just like quote except that syntax
does not strip the encapsulated value but rather leaves the syntax wrappers
intact.

14 Comparing identifiers

Identifiers are compared based on their intended use. They can be compared as
symbols by using the pointer equivalence operator, eq?, on the symbolic names
of the identifiers. They can also be compared according to their intended use
as free or bound identifiers in the output of a macro.

Two identifiers are equivalent by free-identifier=? if they would resolve
to the same binding if introduced into the output of a macro outside of any
binding introduced by the macro. This is accomplished by comparing the labels
to which the identifiers resolve.

(define free-identifier=?
(lambda (x y)
(eq? (id-label x) (id-label y))))

17

The free-identifier=? predicate is often used to check for auxiliary keywords,
like else in cond or case.

Two identifiers are equivalent by bound-identifier=? if a reference to one
would be captured by a enclosing binding for another. This is accomplished by
comparing the names and marks of the two identifiers.

(define bound-identifier=?
(lambda (x y)
(and (eq? (syntax-object-expr x) (syntax-object-expr y))

(same-marks?
(wrap-marks (syntax-object-wrap x))
(wrap-marks (syntax-object-wrap y))))))

The bound-identifier=? predicate is often used to check for duplicate identi-
fier errors in a binding form, such as lambda or let.

15 Conversions

The conversion from s-expression to syntax object performed by datum->syntax
requires only that the wrap be transferred from the template identifier to the
s-expression.

(define datum->syntax
(lambda (template-id x)
(make-syntax-object x (syntax-object-wrap template-id))))

The opposite conversion involves stripping the wrap away from a syntax object,
so syntax->datum is just strip.

(define syntax->datum strip)

16 Starting expansion

All of the pieces are now in place to expand Scheme expressions containing
macros into expressions in the core language. The main expander merely sup-
plies an initial wrap and environment that include names and bindings for the
core forms and primitives.

(define expand
(lambda (x)
(let-values ([(wrap env) (initial-wrap-and-env)])
(exp (make-syntax-object x wrap) env env))))

The initial wrap consists of a set of substitutions mapping each predefined iden-
tifier to a fresh label, and the initial environment associates each of these labels
with the corresponding binding.

18

(define initial-wrap-and-env
(lambda ()
(define id-binding*
‘((quote . ,(make-binding ’core exp-quote))
(if . ,(make-binding ’core exp-if))
(lambda . ,(make-binding ’core exp-lambda))
(let . ,(make-binding ’core exp-let))
(letrec-syntax . ,(make-binding ’core exp-letrec-syntax))
(identifier? . ,(make-binding ’lexical ’identifier?))
(free-identifier=? .
,(make-binding ’lexical ’free-identifier=?))

(bound-identifier=? .
,(make-binding ’lexical ’bound-identifier=?))

(datum->syntax . ,(make-binding ’lexical ’datum->syntax))
(syntax->datum . ,(make-binding ’lexical ’syntax->datum))
(syntax-error . ,(make-binding ’lexical ’syntax-error))
(syntax-pair? . ,(make-binding ’lexical ’syntax-pair?))
(syntax-car . ,(make-binding ’lexical ’syntax-car))
(syntax-cdr . ,(make-binding ’lexical ’syntax-cdr))
(syntax . ,(make-binding ’core exp-syntax))
(list . ,(make-binding ’core ’list))))

(let ([label* (map (lambda (x) (make-label)) id-binding*)])
(values
‘(,@(map (lambda (sym label)

(make-subst sym (list top-mark) label))
(map car id-binding*)
label*)

,top-mark)
(map cons label* (map cdr id-binding*))))))

In addition to the entries listed, the initial environment should also include
bindings for the built-in syntactic forms we have not implemented, (e.g., letrec
and let-syntax), as well as for all built-in Scheme procedures. It should also
include a full version of syntax and, in place of syntax-pair?, syntax-car,
and syntax-cdr, it should include syntax-case.

17 Example

To illustrate the expansion algorithm, we can trace the expansion of the follow-
ing example from the overview.

(let ([t #t]) (or #f t))

We assume that or has been defined to do the transformation given in the
overview, using the equivalent of the following definition of or from Section 1.

19

(define-syntax or
(lambda (x)
(syntax-case x ()
[(e1 e2) #’(let ([t e1]) (if t t e2))])))

At the outset, the expander is presented with a syntax object whose expression
is (let ([t #t]) (or #f t)) and wrap is empty, except for the contents of
the initial wrap, which we suppress for brevity.

<(let ((t #t)) (or #f t))>

We identify syntax objects by enclosing the expression and wrap entries, if any,
in angle brackets.

The expander is also presented with the initial environment, which we as-
sume contains a binding for the macro or as well as for the core forms and
built-in procedures. Again, we suppress these environment entries for brevity.
We also suppress the meta environment, which plays no role here since we are
not expanding any transformer expressions.

The expression above is recognized as a core form, because let is present in
the initial wrap and environment. The transformer for let recursively expands
the right-hand-side expression, #t, in the input environment, yielding #t. It
also recursively expands the body with an extended wrap that maps t to a
fresh label l1:

<(or #f t) [t × () → l1]>

Substitutions are shown with enclosing brackets, the name and list of marks
separated by the symbol ×, and the label following a right arrow.

The environment is also extended to map the label to a binding of type
lexical with fresh name t.1.

l1 → lexical(t.1)

The or form is recognized as a macro call, so the transformer for or is invoked,
producing a new expression to be evaluated in the same environment. The input
to the or transformer is marked with a fresh mark m2, and the same mark is
added to the output, yielding:

<(<let> ((<t> #f))
(<if> <t> <t> <t m2 [t × () → l1]>))

m2>

The differences between the syntax objects representing the introduced identifier
t and the identifier t extracted from the input are crucial in determining how
each is renamed when the expander reaches it as described below.

The #f appearing on the let right-hand side should technically be a syntax
object with the same wraps as the occurrence of t extracted from the input, but
the wrap is unimportant for constants so we treat it as if it were not wrapped
for simplicity.

We have another core let expression. In the process of recognizing and
parsing the let expression, the mark m2 is pushed onto the subforms:

20

(<let m2> ((<t m2> #f))
<(<if> <t> <t> <t m2 [t × () → l1]>)
m2>)

The transformer for let recursively expands the right-hand-side expression #f,
yielding #f, then recursively expands the body with an extended wrap mapping
the introduced t with mark m2 to a fresh label l2:

<(<if> <t> <t> <t m2 [t × () → l1]>)
[t × (m2) → l2]
m2>

The environment is also extended to map the label to a binding of type lexical
with fresh name t.2.

l2 → lexical(t.2), l1 → lexical(t.1)

The resulting expression is recognized as an if core form. In the process of rec-
ognizing and parsing it, the expander pushes the outer substitution and marks
onto the subforms. The mark m2 already appearing in the wrap for the last oc-
currence of t2 cancels the mark m2 on the outer wrap, leaving that occurrence
of t2 unmarked.

(<if [t × (m2) → l2] m2>
<t [t × (m2) → l2] m2>
<t [t × (m2) → l2] m2>
<t [t × (m2) → l2] [t × () → l1]>)

The transformer for if recursively processes its subforms in the input environ-
ment. The first:

<t [t × (m2) → l2] m2>

is recognized as an identifier reference, since the expression is a symbol (t). The
substitution appearing in the wrap applies in this case, since the name (t) and
marks (m2) are the same. So the expander looks for l2 in the environment and
finds that it maps to the lexical variable t.2. The second subform is the same
and so also maps to t.2. The third is different, however:

<t [t × (m2) → l2] [t × () → l1]>)

This identifier lacks the m2 mark, so the first substitution does not apply, even
though the name is the same. The second does apply, because it has the same
name and the same set of marks (none, beyond the top-mark from the suppressed
initial wrap). The expander thus looks for l1 in the environment and finds that
it maps to the lexical variable t.1.

On the way out, the if expression is reconstructed as:

(if t.2 t.2 t.1)

the inner let expression is reconstructed as:

(let ([t.2 #f]) (if t.2 t.2 t.1))

21

and the outer let expression is reconstructed as:

(let ([t.1 #t]) (let ([t.2 #f]) (if t.2 t.2 t.1)))

which is exactly what we want, although the particular choice of fresh names is
not important as long as they are distinct.

18 Summary

The simplified expander described here illustrates the basic algorithm that un-
derlies a complete implementation of syntax-case, without the complexities
of the pattern-matching mechanism, handling of internal definitions, and the
additional core forms that are usually handled by an expander. The repre-
sentation of environments is tailored to the single-binding lambda, let, and
letrec-syntax forms implemented by the expander; a more efficient repre-
sentation that handles groups of bindings would typically be used in practice.
While these additional features are not trivial to add, they are conceptually
independent of the expansion algorithm.

The syntax-case expander extends the KFFD hygienic macro-expansion
algorithm with support for local syntax bindings and controlled capture, among
other things, and also eliminates the quadratic expansion overhead of the KFFD
algorithm. The KFFD algorithm is simple and elegant, and an expander based
on it could certainly be a beautiful piece of code. The syntax-case expander,
on the other hand, is of necessity considerably more complex. It is not, however,
any less beautiful, for there can still be beauty in complex software as long as
it is well structured and does what it is designed to do.

References

[1] H. P. Barendregt. Introduction to the lambda calculus. Nieuw Archief voor
Wisenkunde, 4(2):337–372, 1984.

[2] William Clinger and Jonathan Rees (editors). Revised4 report on the al-
gorithmic language Scheme. LISP Pointers, IV(3):1–55, July-September
1991.

[3] William Clinger and Jonathan Rees. Macros that work. In Conference
Record of the Eighteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 155–162, January 1991.

[4] R. Kent Dybvig. The Scheme Programming Language. MIT Press, third
edition, 2003.

[5] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide. Cadence Research
Systems, 2005.

[6] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction
in Scheme. Lisp and Symbolic Computation, 5(4):295–326, 1993.

22

[7] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5

report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998. Also appears in ACM SIGPLAN Notices
33(9), September 1998.

[8] Brian W. Kernighan and Dennis M. Ritchie. The M4 Macro Processor,
1979.

[9] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988.

[10] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In Proceedings of the 1986 ACM Con-
ference on Lisp and Functional Programming, pages 151–161, 1986.

[11] Guy L. Steele Jr. Common Lisp, the Language. Digital Press, second
edition, 1990.

23

