
Printing Floating-Point Numbers Quickly and Accurately

Robert G. Burger∗ R. Kent Dybvig

Indiana University Computer Science Department
Lindley Hall 215

Bloomington, Indiana 47405
(812) 855-3608

{burger,dyb}@cs.indiana.edu

Abstract

This paper presents a fast and accurate algorithm for print-
ing floating-point numbers in both free- and fixed-format
modes. In free-format mode, the algorithm generates the
shortest, correctly rounded output string that converts to
the same number when read back in, regardless of how the
reader breaks ties when rounding. In fixed-format mode,
the algorithm generates a correctly rounded output string
using special # marks to denote insignificant trailing digits.
For both modes, the algorithm employs a fast estimator to
scale floating-point numbers efficiently.

Keywords: floating-point printing, run-time systems

1 Introduction

In this paper we present an efficient floating-point printing
algorithm, which solves the output problem of converting
floating-point numbers from an input base (usually a power
of two) to an output base (usually ten).

The algorithm supports two types of output, free format
and fixed format. For free-format output the goal is to pro-
duce the shortest, correctly rounded output string that con-
verts to the same internal floating-point number when read
by an accurate floating-point input routine [1]. For exam-
ple, 3

10
would print as 0.3 instead of 0.2999999. Assuming

a round-to-nearest mode on input, the algorithm accommo-
dates any tie-breaking strategy, including IEEE unbiased
rounding, for example.

For fixed-format output the goal is to produce cor-
rectly rounded output to a given number of places with-
out “garbage digits” beyond the point of significance. For
example, the floating-point representation of 1

3
might print

as 0.3333333148 even though only the first seven digits are
significant. The algorithm uses special # marks to denote in-
significant trailing digits so that 1

3
prints as 0.3333333###.

These marks are useful when printing denormalized num-
bers, which may have only a few digits of precision, or when
printing to a large number of digits.

Our algorithm is based on an elegant floating-point print-
ing algorithm developed by Steele and White [5]. Their

∗Supported in part by a National Science Foundation Graduate
Research Fellowship

Published in Proceedings of the SIGPLAN ’96 Con-
ference on Programming Language Design and Imple-
mentation. Copyright c© 1996 by the Association for
Computing Machinery, Inc.

algorithm also supports both free- and fixed-format out-
put, although it does not properly handle input tie-breaking
strategies or distinguish between significant and insignificant
trailing zeros. Furthermore, it is unacceptably slow for prac-
tical use. An important step in the conversion algorithm is
to scale the floating-point number by an appropriate power
of the output base. Steele and White’s iterative algorithm
requires O(|log x|) high-precision integer operations to scale
x, which results in poor performance for floating-point num-
bers with very large and very small magnitudes. We devel-
oped an efficient estimator that always produces an estimate
within one of the correct power, so our algorithm scales all
floating-point numbers in just a few high-precision integer
operations.

Section 2 develops a basic floating-point printing al-
gorithm in terms of exact rational arithmetic. Section 3
describes an implementation of the algorithm using high-
precision integer arithmetic and our efficient scaling-factor
estimator. Section 4 extends the algorithm to handle fixed-
format output and introduces # marks. Section 5 summa-
rizes our results and discusses related work.

2 Basic Algorithm

In describing the basic algorithm, we first explain how
floating-point numbers are represented, using the IEEE
double-precision floating-point specification as an exam-
ple [3]. Second, we develop an output algorithm based on a
key feature of the representation, the gaps between floating-
point numbers. Finally, we prove that our algorithm gen-
erates the shortest, correctly rounded output string from
which the original floating-point number can be recovered
when input.

2.1 Floating-Point Representation

An important goal in the design of floating-point numbers is
to provide a representation that can approximate real num-
bers to a certain number of digits of accuracy. Consequently,
a floating-point representation embodies the notions of the
first few significant digits and the location of the decimal
point.

A floating-point number is modeled mathematically by
a mantissa, which corresponds to the first few significant
digits, and an exponent, which corresponds to the location
of the decimal point. For example, suppose v is a floating-
point number in base b (usually two). The mantissa, f , and
exponent, e, are base-b integers such that v = f × be and

|f | < bp, where p is the fixed size of the mantissa in base-b
digits. Moreover, v is called normalized if bp−1 ≤ |f |, i.e.,
the mantissa begins with a non-zero digit.

An un-normalized, non-zero floating-point number can
be normalized by shifting the mantissa to the left and re-
ducing the exponent accordingly. Because the exponent has
a fixed size, however, some numbers cannot be normalized.
Such numbers are called denormalized floating-point num-
bers.

If the input base is two, the mantissa of normalized, non-
zero numbers always begins with a one. Consequently, this
initial bit is often omitted from the representation and is
called the hidden bit . These representations often reserve
an exponent bit pattern to signal denormalized numbers.

The IEEE specification [3] also provides representations
for −0.0, positive infinity (+inf), negative infinity (−inf),
and “not a number” (NaN).

An IEEE double-precision floating-point number, v, is
represented as a 64-bit datum composed of three fields: a
one-bit sign, an eleven-bit unsigned biased exponent (be),
and a 52-bit unsigned mantissa (m) with a hidden bit.

If 1 ≤ be ≤ 2046, v is a normalized floating-point number
whose value is sign (252 + m) × 2be−1075. If be = 0, v is a
denormalized floating-point number whose value is sign m×
2−1074, which includes +0.0 and −0.0. If be = 2047 and
m = 0, v is +inf or −inf, depending on the sign. If be = 2047
and m 6= 0, v is NaN.

This type of representation produces uneven gaps be-
tween floating-point numbers. Floating-point numbers are
most dense around zero and decrease in density as one moves
outward along the real number line in either direction.

Given a floating-point number, v, it is useful to define
its floating-point successor, denoted by v+, and predecessor,

denoted by v−. All real numbers between v−+v
2

and v+v+

2
round to v.

Suppose v = f×be as before. We consider the case where
f > 0; the case for f < 0 is completely analogous. For all
v, v+ is (f + 1)× be. If f + 1 no longer fits in the fixed-size
mantissa, i.e., if f + 1 = bp, then v+ is bp−1 × be+1. If e is
the maximum exponent, v+ is +inf.

For most v, v− is (f − 1) × be. For the remaining v,
the gap is narrower. If f = bp−1 and e is greater than the
minimum exponent, v− is (bp − 1)× be−1.

2.2 Algorithm

We now develop an algorithm that takes advantage of the
gaps between floating-point numbers in order to produce
the shortest, correctly rounded output string from which
the original floating-point number can be recovered when
input.

For purposes of discussion, we limit the input to posi-
tive floating-point numbers. Given a positive floating-point
number v in terms of its mantissa and exponent, the algo-
rithm uses v− and v+ to determine the exact range of values
that would round to v when input. Because input rounding
algorithms use different strategies to break ties (e.g., round
up or round to even), we initially assume that neither end
point of the rounding range can be guaranteed to round to
v when input. In Section 3 we show how to relax this con-
straint based on knowledge of a particular input rounding
algorithm.

The algorithm uses exact rational arithmetic to perform
its computations so that there is no loss of accuracy. In

order to generate digits, the algorithm scales the number so
that it is of the form 0.d1d2 . . ., where d1, d2, . . ., are base-B
digits. The first digit is computed by multiplying the scaled
number by the output base, B, and taking the integer part.
The remainder is used to compute the rest of the digits using
the same approach.

The rounding range determines when the algorithm stops
generating digits. After each digit is generated, the algo-
rithm tests to see if either the resulting number or the re-
sulting number with the last digit incremented is within the
rounding range of v. If one or both of these numbers is
within range, the number closer to v is chosen. In the case
of a tie, any strategy can be used to decide, since both possi-
bilities would round to v when input. By testing the output
number at each digit, the algorithm produces the shortest
possible output string that would correctly round to v when
input. Moreover, it generates digits from left to right with-
out the need to propagate carries.

The following is a more formal description of the algo-
rithm. We use bxc to denote the greatest integer less than
or equal to x, dxe to denote the least integer greater than or
equal to x, and {x} to denote x − bxc. We always indicate
multiplication with the × sign, because we use juxtaposition
to indicate digits in a place-value notation.

Input: output base B and positive floating-point number
v = f × be of precision p > 0

Output: V = 0.d1d2 . . . dn×Bk, where d1, . . . , dn are base-
B digits and n is the smallest integer such that:

(1) v−+v
2

< V < v+v+

2
, i.e., V would round to v

when input, regardless of how the input rounding
algorithm breaks ties, and

(2) |V − v| ≤ Bk−n

2
, i.e., V is correctly rounded.

Procedure:

1. Determine v− and v+, the floating-point predecessor
and successor of v, respectively.

v− =

{
v − be if e = min. exp. or f 6= bp−1

v − be−1 if e > min. exp. and f = bp−1

v+ = v + be

Let low = v−+v
2

and high = v+v+

2
. All numbers be-

tween low and high round to v, regardless of how the
input rounding algorithm breaks ties.

� � � � � � � � � � 	

2. Find the smallest integer k such that high ≤ Bk; i.e.,
k = dlogB highe. k is used to scale v appropriately.

3. Let q0 = v
Bk . Generate digits as follows:

d1 = bq0 ×Bc q1 = {q0 ×B}
d2 = bq1 ×Bc q2 = {q1 ×B}

...
...

4. Stop at the smallest n for which

(1) 0.d1 . . . dn×Bk > low , i.e., the number output at
point n would round up to v, or

2

(2) 0.d1 . . . dn−1[dn+1]1×Bk < high, i.e., increment-
ing digit dn would make the number round down
to v.

If condition (1) is true and condition (2) is false, return

0.d1 . . . dn ×Bk.

If condition (2) is true and condition (1) is false, return

0.d1 . . . dn−1[dn+1]×Bk.

If both conditions are true, return the number closer to
v. If the two are equidistant from v, use some strategy
to break the tie (e.g., round up).

2.3 Correctness

We now prove that our algorithm is correct. We begin by
showing that the algorithm generates valid base-B digits,
the first of which is non-zero, and that there is no need to
propagate carries in the case of incrementing the last digit.

Because 0 ≤ qi < 1 for all 0 ≤ i ≤ n, all the di are
valid base-B digits. Termination condition (2) guarantees
that if dn is incremented, no carry will be introduced; for
if there were a carry, termination condition (2) would have
held at the previous step. By the minimality of k and termi-
nation condition (2), the first digit must be non-zero. (See
Theorem 1 in Appendix A for a complete proof.)

Next we show that output condition (1) holds, i.e., the
algorithm always terminates with a number that correctly
rounds to v when input, satisfying the goal of information
preservation. In order to prove this, we first prove an in-
variant of the digit-generation loop by induction: for all i,
0.d1 . . . di×Bk +qi×Bk−i = v. In other words, the number
generated at step i is qi × Bk−i below v. (See Lemma 2 in
Appendix A.) This invariant leads to a more concise version
of the termination conditions (see the corollary to Lemma 2
in Appendix A):

(1) qn ×Bk−n < v − low , and

(2) (1− qn)×Bk−n < high − v.

Since 0 ≤ qn < 1 and Bk−n becomes arbitrarily close
to zero as n increases, termination condition (1) eventually
holds; thus, the algorithm always terminates. Moreover, the
invariant and the above termination conditions guarantee
that the algorithm terminates with a number strictly be-
tween low and high. (See Theorem 3 in Appendix A.)

Having shown that the output rounds to v when in-
put, we now show that the last digit of the output is cor-
rectly rounded, i.e., output condition (2) holds. Because

the algorithm chooses the closer of 0.d1 . . . dn × Bk and
0.d1 . . . dn−1[dn+1]×Bk, the last digit is correctly rounded.
(See Theorem 4 in Appendix A.)

Finally, we show that no shorter output string rounds
to v when input. Equivalently, no (n − 1)-digit num-
ber (trailing zeros are allowed) also rounds to v when in-
put. Suppose such a number, V ′, exists. Using the in-
variant, one can easily show that 0.d1 . . . dn−1 × Bk and
0.d1 . . . dn−2[dn−1+1] × Bk are the two (n − 1)-digit num-
bers closest to v. Without loss of generality, we assume that

1The notation 0.d1 . . . dn−1[dn+1] denotes
1

Bn
+

n∑
i=1

di

Bi
. Infor-

mally, this represents the number formed by incrementing the last
digit.

V ′ is one of them. If V ′ is the first, termination condition (1)
would have held at step n− 1, a contradiction. If V ′ is the
second, termination condition (2) would have held at step
n − 1, a contradiction. Therefore, no shorter output string
rounds to v when input. (See Theorem 5 in Appendix A.)

3 Implementation

The basic output algorithm presented in the preceding sec-
tion can be implemented directly in Scheme using built-in
exact rational arithmetic. The resulting code, however, runs
slowly, especially for floating-point numbers with large ex-
ponents. The two main sources for the inefficiency are the
high-precision rational arithmetic and the iterative search
for the scaling factor k. Because the algorithm does not
need the full generality of rational arithmetic (i.e., there is
no need to reduce fractions to lowest terms or to maintain
separate denominators), it is more efficient to convert the
algorithm to use high-precision integer arithmetic with an
explicit common denominator. In this section we modify the
algorithm to use high-precision integer arithmetic and a fast
estimator for determining k.

3.1 Integer Arithmetic

In order to eliminate the high-precision rational arithmetic,
we introduce an explicit common denominator so that the
algorithm can use high-precision integer arithmetic. We also
make use of the more concise termination conditions given
in the preceding section.

Procedure:

1. Initialize r, s, m+, and m− such that v = r
s
, v−v−

2
=

m−
s

, and v+−v
2

= m+

s
according to Table 1.

2. Find the smallest integer k such that r+m+

s
≤ Bk; i.e.,

k =
⌈
logB

r+m+

s

⌉
.

3. If k ≥ 0, let r0 = r, s0 = s × Bk, m+
0 = m+, and

m−
0 = m−.

If k < 0, let r0 = r × B−k, s0 = s, m+
0 = m+ × B−k,

and m−
0 = m− ×B−k.

Generate digits as follows:

d1 =
⌊

r0 ×B

s0

⌋
r1 =

{
r0 ×B

s0

}
s1 = s0

m+
1 = m+

0 ×B m−
1 = m−

0 ×B

d2 =
⌊

r1 ×B

s1

⌋
r2 =

{
r1 ×B

s1

}
s2 = s1

m+
2 = m+

1 ×B m−
2 = m−

1 ×B
...

...
...

Invariants:

(1) v =
rn

sn
×Bk−n +

n∑
i=1

di ×Bk−i

(2)
v − v−

2
=

m−
n

sn
×Bk−n

(3)
v+ − v

2
=

m+
n

sn
×Bk−n

3

e ≥ 0 e < 0

f 6= bp−1 f = bp−1 e = min exp or f 6= bp−1 e > min exp and f = bp−1

r f × be × 2 f × be+1 × 2 f × 2 f × b× 2

s 2 b× 2 b−e × 2 b−e+1 × 2

m+ be be+1 1 b

m− be be 1 1

Table 1: Initial values of r, s, m+, and m−

4. Stop at the smallest n for which

(1) rn < m−
n , or

(2) rn + m+
n < sn

If condition (1) is true and condition (2) is false, return

0.d1 . . . dn ×Bk.

If condition (2) is true and condition (1) is false, return

0.d1 . . . dn−1[dn+1]×Bk.

If both conditions are true, return the number that
is closer to v, using some strategy to break ties. If
rn × 2 < sn, 0.d1 . . . dn × Bk is closer. If rn × 2 > sn,
0.d1 . . . dn−1[dn+1]×Bk is closer.

The invariants, which can be verified by a straightfor-
ward proof by induction, are useful in establishing the equiv-
alence of this algorithm with the basic algorithm proved cor-
rect in Section 2.3.

If the input routine’s tie-breaking algorithm is known, V
may be allowed to equal low or high or both. If low would
round up to v when input, termination condition (1) would
be rn ≤ m−

n . If high would round down to v when input,
termination condition (2) would be rn + m+

n ≤ sn, and k

would be the smallest integer such that r+m+

s
< Bk (i.e.,

k = 1 +
⌊
logB

r+m+

s

⌋
).

For IEEE unbiased rounding, if the mantissa, f , is even,
then both low and high would round to v; otherwise, nei-
ther low nor high would round to v. For example, 1023

falls exactly between two IEEE floating-point numbers, the
smaller of which has an even mantissa; thus, 1023 rounds
to the smaller when input. By accommodating unbiased
rounding, the algorithm prints this number as 1e23 instead
of 9.999999999999999e22.

Figure 1 gives Scheme code for the algorithm. It uses
an iterative algorithm (scale) similar to the one presented
in [5] to find k. It assumes the input routine uses IEEE
unbiased rounding. In the case of a tie in determining
dn, it always rounds up by choosing dn + 1. The function
flonum→digitsreturns a pair whose first element is k and
whose second element is the list of digits.

3.2 Efficient Scaling

Steele and White’s iterative algorithm requires O(| log v|)
high-precision integer operations to compute k, r0, s0, m+

0 ,
and m−

0 . An obvious alternative is to use the floating-point
logarithm function to approximate k with dlogB ve and then
use an efficient algorithm to compute the appropriate power
of B by which to multiply either s or r, m+, and m−. Be-
cause the floating-point logarithm may be slightly smaller

or larger than the true logarithm, a small constant (chosen
to be slightly greater than the largest possible error) is sub-
tracted from the floating-point logarithm so that the ceiling
of the result will be either k or k − 1. Consequently, the
estimate must be checked and adjusted by one if necessary.

Figure 2 shows Scheme code that finds k and scales the
numbers using just a few high-precision integer operations.
The new scale procedure takes an additional argument, v.
The code uses a table to look up the value of 10k for 0 ≤ k ≤
325, which is sufficient to handle all IEEE double-precision
floating-point numbers. It also uses a table to look up the
value of 1

log B
for 2 ≤ B ≤ 36 in order to speed up the

computation of logB v.
If the cost of the floating-point logarithm function is

fairly high, it may be more efficient to compute a less accu-
rate approximation to the logarithm. Because in almost all
floating-point representations the input base, b, is two (or a
power of two), we assume that b = 2 for our discussion of
logarithm estimators. We also assume that B > 2, because
there is no reason to use a conversion algorithm if the output
base is the same as the input base.

Since v = f × 2e, log2 v = log2 f + e. If we compute
the integer s and floating-point number x such that v =
x × 2s and 1 ≤ x < 2, we get log2 v = log2 x + s, where
0 ≤ log2 x < 1. In other words, s is the integer part of
the base-2 logarithm of v. Let len(f) be the length of f in
bits. Then s = e+ len(f)−1. For normalized floating-point
numbers, we have s = e + p− 1.

In order to estimate logB v =
log2 v

log2 B
, we use s

log2 B
. This

estimate never overshoots logB v, and it undershoots by no
more than 1

log2 3
< 0.631. Once again, floating-point arith-

metic does not compute the exact value of s
log2 B

, so we sub-

tract a small constant in order to preserve the property that
the estimate never overshoots. Assuming the estimate is
computed using IEEE double-precision floating-point arith-
metic, 1

log2 B
can be represented with an error of less than

10−14. Since s is between −1074 and 1023, the floating-point
result of s× 1

log2 B
has an error of less than 10−10. Because

our estimate never overshoots k and the error is less than

one,
⌈

s
log2 B

⌉
is k or k − 1. This result also holds if k is

1 +
⌊
logB

r+m+

s

⌋
.

Whereas the floating-point logarithm estimate was al-
most always k, our simpler estimate is frequently k − 1.
Having the estimate off by one introduces extra overhead,
but this overhead can be eliminated. When the estimate is
k − 1, fixup multiplies s by B and then calls generate to
generate the digits. On entry to generate, r, m+, and m−

are multiplied by B. By moving these multiplications back
into the call sites of generate, the multiplications can be

4

(define flonum→digits
(lambda (v f e min-e p b B)

(let ([round? (even? f)])
(if (>= e 0)

(if (not (= f (expt b (− p 1))))
(let ([be (expt b e)])

(scale (∗ f be 2) 2 be be 0 B round? round?))
(let∗ ([be (expt b e)] [be1 (∗ be b)])

(scale (∗ f be1 2) (∗ b 2) be1 be 0 B round? round?)))
(if (or (= e min-e) (not (= f (expt b (− p 1)))))

(scale (∗ f 2) (∗ (expt b (− e)) 2) 1 1 0 B round? round?)
(scale (∗ f b 2) (∗ (expt b (− 1 e)) 2) b 1 0 B round? round?))))))

(define scale
(lambda (r s m+ m− k B low-ok? high-ok?)

(cond
[((if high-ok? >= >) (+ r m+) s) ; k is too low
(scale r (∗ s B) m+ m− (+ k 1) B low-ok? high-ok?)]
[((if high-ok? < <=) (∗ (+ r m+) B) s) ; k is too high
(scale (∗ r B) s (∗ m+ B) (∗ m− B) (− k 1) B low-ok? high-ok?)]
[else ; k is correct
(cons k (generate r s m+ m− B low-ok? high-ok?))])))

(define generate
(lambda (r s m+ m− B low-ok? high-ok?)

(let ([q-r (quotient-remainder (∗ r B) s)]
[m+ (∗ m+ B)]
[m− (∗ m− B)])

(let ([d (car q-r)]
[r (cdr q-r)])

(let ([tc1 ((if low-ok? <= <) r m−)]
[tc2 ((if high-ok? >= >) (+ r m+) s)])

(if (not tc1)
(if (not tc2)

(cons d (generate r s m+ m− B low-ok? high-ok?))
(list (+ d 1)))

(if (not tc2)
(list d)
(if (< (∗ r 2) s)

(list d)
(list (+ d 1))))))))))

Figure 1: Scheme code that implements the basic conversion algorithm with an iterative scaling procedure and IEEE unbiased
rounding (round to even). For other rounding modes, scale and generate may be called with different values for low-ok? and
high-ok? .

eliminated in fixup when the estimator returns k − 1. The
result is that there is no penalty for an estimate that is off
by one. Figure 3 gives a Scheme implementation of our es-
timator and the modified digit-generation loop. It modifies
the original scale function to take additional arguments f
and e, and it uses a table to look up the value of 1

log2 B
for

2 ≤ B ≤ 36.
Table 2 gives the relative CPU times for Steele and

White’s iterative scaling algorithm [5] and the floating-point
logarithm scaling algorithm with respect to our simple es-
timate and scaling algorithm. The timings were performed
using Chez Scheme on a DEC AXP 8420 running Digital
UNIX V3.2C. The input was a set of 250,680 positive nor-
malized IEEE double-precision floating-point numbers, and
the output base was ten. This set was generated accord-
ing to the forms Schryer developed for testing floating-point

Scaling Algorithm Relative CPU Time

Steele & White 70.0

floating-point log 1.03

log approximation 1.00

Table 2: Relative CPU times for three different scaling al-
gorithms

units [4]. As expected, the timings show that the iterative
scaling algorithm is almost two orders of magnitude slower
than either estimate-based algorithm.

5

(define scale
(lambda (r s m+ m− k B low-ok? high-ok? v)

(let ([est (inexact→exact (ceiling (− (logB B v) 1e−10)))])
(if (>= est 0)

(fixup r (∗ s (exptt B est)) m+ m− est B low-ok? high-ok?)
(let ([scale (exptt B (− est))])

(fixup (∗ r scale) s (∗ m+ scale) (∗ m− scale) est B low-ok? high-ok?))))))

(define fixup
(lambda (r s m+ m− k B low-ok? high-ok?)

(if ((if high-ok? >= >) (+ r m+) s) ; too low?
(cons (+ k 1) (generate r (∗ s B) m+ m− B low-ok? high-ok?))
(cons k (generate r s m+ m− B low-ok? high-ok?)))))

(define exptt
(let ([table (make-vector 326)])

(do ([k 0 (+ k 1)] [v 1 (∗ v 10)])
((= k 326))

(vector-set! table k v))
(lambda (B k)

(if (and (= B 10) (<= 0 k 325))
(vector-ref table k)
(expt B k)))))

(define logB
(let ([table (make-vector 37)])

(do ([B 2 (+ B 1)])
((= B 37))

(vector-set! table B (/ (log B))))
(lambda (B x)

(if (<= 2 B 36)
(∗ (log x) (vector-ref table B))
(/ (log x) (log B))))))

Figure 2: Scheme code that uses the floating-point logarithm function to estimate k and then adjusts the result to the exact
value of k

4 Fixed-Format Output

Up to this point we have addressed the free-format output
problem. We now describe how to modify the basic algo-
rithm to generate fixed-format output. A key property of
the output conversion algorithm is its use of the rounding
range of v, determined by computing v+ and v−. For fixed-
format output, this range is conditionally modified to indi-
cate the requested precision. If a floating-point number has
enough precision to be printed to the given digit position,
the rounding range is expanded so that the output will stop
at the given position. If a floating-point number has insuffi-
cient precision, the rounding range is not expanded, and the
output will contain # marks past the last significant digit.

There are two ways of specifying how many digits to
print in fixed-format mode: by absolute digit position and
by relative digit position. An absolute digit position is the
distance from the radix point in base-B digits at which one
wants the output to stop. A relative digit position is the
number of base-B digits to print.

Suppose an absolute digit position is given. Let j be
the digit position and v be a positive floating-point number.
In order for the output, V , to be correctly rounded, v −
Bj

2
≤ V ≤ v + Bj

2
. Because of the gaps in the floating-

point representation, all numbers between v−+v
2

and v+v+

2

are indistinguishable from v. The algorithm uses the larger
range in order to determine when to stop generating digits.

In other words, let low be the lesser of v−+v
2

and v − Bj

2
,

and let high be the greater of v+v+

2
and v + Bj

2
.

After low and high are computed, the scaling factor k is
determined as before. If the end point high is in the rounding

range (i.e., if high = v + Bj

2
), k is the smallest integer such

that high < Bk; i.e., k = 1+blogB highc. Otherwise, k is the
smallest integer such that high ≤ Bk; i.e., k = dlogB highe.

The digits are generated as before. Termination condi-
tion (1) is extended to include equality when the end point
low is in the rounding range. Similarly, termination condi-
tion (2) is extended to include equality when the end point
high is in the rounding range.

Let n be the smallest integer for which one of the ter-
mination conditions holds. As before, digit dn is incre-
mented when 0.d1 . . . dn−1[dn+1] × Bk is closer to v than

0.d1 . . . dn×Bk (or possibly in the case of a tie). If j = k−n,
the algorithm stopped at the desired digit position, so the
algorithm simply returns the result. Because of the way
we defined the termination conditions, the algorithm cannot
generate too many digits. Therefore, if j 6= k−n, j < k−n,
so the algorithm must generate the remaining digits.

Unfortunately the algorithm cannot simply print # marks

6

(define scale
(lambda (r s m+ m− k B low-ok? high-ok? f e)

(let ([est (inexact→exact (ceiling (− (∗ (+ e (len f) −1) (invlog2of B)) 1e−10)))])
(if (>= est 0)

(fixup r (∗ s (exptt B est)) m+ m− est B low-ok? high-ok?)
(let ([scale (exptt B (− est))])

(fixup (∗ r scale) s (∗ m+ scale) (∗ m− scale) est B low-ok? high-ok?))))))

(define fixup
(lambda (r s m+ m− k B low-ok? high-ok?)

(if ((if high-ok? >= >) (+ r m+) s) ; too low?
(cons (+ k 1) (generate r s m+ m− B low-ok? high-ok?))
(cons k (generate (∗ r B) s (∗ m+ B) (∗ m− B) B low-ok? high-ok?)))))

(define generate
(lambda (r s m+ m− B low-ok? high-ok?)

(let ([q-r (quotient-remainder r s)])
(let ([d (car q-r)]

[r (cdr q-r)])
(let ([tc1 ((if low-ok? <= <) r m−)]

[tc2 ((if high-ok? >= >) (+ r m+) s)])
(if (not tc1)

(if (not tc2)
(cons d (generate (∗ r B) s (∗ m+ B) (∗ m− B) B low-ok? high-ok?))
(list (+ d 1)))

(if (not tc2)
(list d)
(if (< (∗ r 2) s)

(list d)
(list (+ d 1))))))))))

(define invlog2of
(let ([table (make-vector 37)]

[log2 (log 2)])
(do ([B 2 (+ B 1)])

((= B 37))
(vector-set! table B (/ log2 (log B))))

(lambda (B)
(if (<= 2 B 36)

(vector-ref table B)
(/ log2 (log B))))))

Figure 3: Scheme code that uses our fast estimator and modified digit-generation loop

from here until position j. Suppose 100 were printed to
absolute position 0, for example. Termination condition (1)
would hold after generating the first digit, but the remaining
digit positions are significant and must therefore be zero,
not #. Consequently, the algorithm must generate zeroes
as long as they are significant and then generate # marks.
A digit is insignificant when it and all the digits after it
can be replaced by any base-B digits without altering the
value of the number when input. In other words, a digit
is insignificant if incrementing the preceding digit does not
cause the number to fall outside the rounding range of v.

If low = v − Bj

2
and high = v + Bj

2
, the remaining

digit positions are all significant, so the algorithm fills them
with zeroes and returns. Otherwise, the precision of the
output is limited by the floating-point representation. The
algorithm generates zeroes until incrementing the preced-
ing digit would result in a number less than or equal to
high, at which point it fills the remaining digit positions

with # marks. For example, when printing 100 in IEEE
double-precision to digit position −20, the algorithm prints
100.000000000000000#####.

Now suppose a relative position is given instead. Let
i > 0 be the number of digits requested. In order to compute
the corresponding absolute digit position, j, the algorithm
first computes the absolute position of the first digit. Unfor-
tunately, the position of the first digit, k−1, may depend on
the upper bound of the rounding range of v, which in turn
may depend on j. This cycle is resolved by using an initial
estimate for k that does not depend on j and then refining

it when necessary. The initial estimate, k̂, is
⌈
logB

v+v+

2

⌉
,

which can be computed efficiently using the techniques de-

scribed in Section 3.2. If v+
Bk̂−i

2
< Bk̂, the initial estimate

was correct, so k = k̂; otherwise, the initial estimate was off

by one, so k = k̂ + 1. At this point the algorithm proceeds

7

System
Free

Fixed

Fixed

printf
Incorrect

Alpha AXP 1.66 2.94 242

HP 9000 1.61 2.19 317

Linux 1.63 0.58 0

RS/6000 1.75 4.46 0

SGI 32 1.61 5.69 186

SGI 64 1.81 3.12 6280

Solaris 1.59 0.68 0

Sun4c 1.66 0.54 0

Sun4d 1.62 0.38 0

Geom. mean 1.66 1.51 N/A

Key:
Alpha AXP—DEC AXP 8420, Digital UNIX V3.2C

HP 9000—HP 9000/715/E, HP-UX A.09.05
Linux—AMD 80486DX2/80, Linux 1.3.32

RS/6000—IBM RS/6000 7013/560, AIX 3.2
SGI 32—SGI IP22, IRIX 5.3
SGI 64—SGI IP21, IRIX64 6.1
Solaris—Sun SPARCstation 2, SunOS 5.5 (Solaris)
Sun4c—Sun SPARCstation 2, SunOS 4.1.3
Sun4d—Sun SPARCstation 5, SunOS 4.1.3

Table 3: Ratio of CPU time for free-format versus straight-
forward fixed-format, fixed-format versus printf, and the
count of incorrectly rounded output from printf on 250,680
floating-point numbers

as though it were given the absolute digit position k − i.
The rational arithmetic used in fixed-format printing can

be converted into high-precision integer arithmetic by intro-
ducing a common denominator as before. Because there are
several more cases to consider, however, the resulting code
is lengthy and has therefore been omitted from this paper.

5 Conclusion

We have developed an efficient algorithm for converting
floating-point numbers from an input base to an output
base. For free-format output, it provably generates the
shortest, correctly rounded number that rounds to the orig-
inal floating-point number when input, taking the input tie-
breaking rounding algorithm into account if desired. For
fixed-format output, it generates a correctly rounded num-
ber with # marks in the place of insignificant trailing dig-
its. These # marks are useful when the requested number
of digits may exceed the internal precision. Our algorithm
employs a fast estimator to compute scaling factors. By
modifying our algorithm slightly, we eliminated the penalty
of having the estimate off by one, which enabled us to make
our estimator very inexpensive.

We have compared an implementation of our free-format
algorithm for base-10 output against an implementation of
a straightforward fixed-format algorithm on several differ-
ent systems. For this test, we used a set of 250,680 posi-
tive normalized IEEE double-precision floating-point num-
bers [4]. The fixed-format algorithm printed them to 17
significant digits, the minimum number guaranteed to dis-
tinguish among IEEE double-precision numbers. In all cases
the numbers were printed to /dev/null in order to factor

out I/O performance. The average number of digits needed
is 15.2, so the free-format algorithm has no particular ad-
vantage over the fixed-format algorithm.

Table 3 shows that our free-format algorithm takes 66%
more CPU time on average than the straightforward fixed-
format algorithm. To provide a basis of comparison against
a standard fixed-format algorithm for each system, the ta-
ble also compares the C library’s printf function against the
straightforward fixed-format algorithm and gives the num-
ber of floating-point numbers that were rounded incorrectly
by printf. For the systems where printf is considerably
faster, we suspect that our implementation could be tuned
to achieve comparable results. (In particular, our current
implementation uses 64-bit arithmetic and performs poorly
on systems without efficient 64-bit support.) While the cost
of free-format output may be significant for some applica-
tions, the cost is justified for many others by the reduced
verbosity of free-format output.

Our algorithm is based on Steele and White’s conversion
algorithm [5]. Ours is dramatically more efficient, primar-
ily due to our use of a fast estimator for computing scaling
factors. Their algorithm does not distinguish between signif-
icant and insignificant trailing zeros, nor does it take into ac-
count input rounding modes. In addition, their fixed-format
algorithm introduced a slight inaccuracy in the computation
of the rounding range.

David Gay independently developed an estimator similar
to ours [2]. It uses the first-degree Taylor series to estimate
log10 v. Although our estimator is less accurate than his,
it is less expensive as well, requiring two rather than five
floating-point operations. Furthermore, since our scaling
algorithm incurs no additional overhead when the estimate
is off by one, the loss of accuracy is unimportant, and scaling
is more efficient in all cases.

Gay also developed an excellent set of heuristics for de-
termining when more efficient digit-generation techniques
can be employed for fixed-format output. In particular, he
showed that floating-point arithmetic is sufficiently accurate
in most cases when the requested number of digits is small.
The fixed-format printing algorithm described in this paper
is useful when these heuristics fail.

An implementation of the algorithms described in this
paper is available from the authors. A version of the free-
format algorithm has been used in Chez Scheme since 1990;
in fact, the ANSI/IEEE Scheme standard requirement for
accurate, minimal-length numeric output and the desire to
do so as efficiently as possible in Chez Scheme motivated the
work reported here.

References

[1] William D. Clinger. How to read floating-point numbers
accurately. ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, 25(6):92–
101, June 1990.

[2] David M. Gay. Correctly rounded binary-decimal
and decimal-binary conversions. Numerical Analysis
Manuscript 90-10, AT&T Bell Laboratories, Murray
Hill, New Jersey 07974, November 1990.

[3] IEEE standard for binary floating-point arithmetic.
ANSI/IEEE Std 754-1985, Institute of Electrical and
Electronics Engineers, New York, 1985.

8

[4] N. L. Schryer. A test of a computer’s floating-point arith-
metic unit. In W. Cowell, editor, Sources and Develop-
ment of Mathematical Software. Prentice-Hall, 1981.

[5] Guy L. Steele Jr. and Jon L. White. How to print
floating-point numbers accurately. ACM SIGPLAN ’90
Conference on Programming Language Design and Im-
plementation, 25(6):112–126, June 1990.

A Proofs of Correctness

This section presents correctness proofs of the free-format
printing algorithm described in Section 2.2. See Section 2.3
for a less formal presentation.

Theorem 1: Each di is a valid base-B digit, d1 > 0, and if
dn is incremented, no carry is generated.

Proof: 0 < q0 = v
Bk < 1 since 0 < v < high ≤ Bk.

For i ≥ 1, 0 ≤ qi < 1 by definition. Thus for all i ≥ 0,
0 ≤ qi ×B < B, so di+1 = bqi ×Bc is a valid base-B digit.

Suppose d1 = 0. Then 0.[d1+1] × Bk = Bk−1 < high
by the minimality of k, so termination condition (2) holds.
Termination condition (1) cannot hold since 0.d1 ×Bk = 0.
Thus digit d1 will be incremented to 1.

Suppose d1 = B − 1. Then 0.[d1+1]× Bk = Bk ≥ high,
so termination condition (2) will not hold, and digit d1 will
not be incremented.

Assume by way of contradiction that final digit dn (n >
1) is incremented to B, which would introduce a carry. Then

0.d1 . . . dn−1[dn+1] × Bk = 0.d1 . . . dn−2[dn−1+1] × Bk <
high, so termination condition (2) would have held at step
n− 1, a contradiction. 2

Lemma 2: v = qn ×Bk−n +

n∑
i=1

di ×Bk−i

Proof: By induction on n.

Basis: v = q0 ×Bk by definition of q0.

Induction: Suppose the result holds for n.

v = qn ×Bk−n +

n∑
i=1

di ×Bk−i

= (qn ×B)×Bk−(n+1) +

n∑
i=1

di ×Bk−i

= (bqn ×Bc+ {qn ×B})×Bk−(n+1) +
n∑

i=1

di ×Bk−i

= (dn+1 + qn+1)×Bk−(n+1) +

n∑
i=1

di ×Bk−i

= qn+1 ×Bk−(n+1) +

n+1∑
i=1

di ×Bk−i

2

Corollary: The following conditions are equivalent to the
termination conditions:

(1) qn ×Bk−n < v − low

(2) (1− qn)×Bk−n < high − v

Theorem 3: (Information Preservation) The algorithm al-
ways terminates with low < V < high.

Proof: By Lemma 2, termination condition (1) is equivalent
to qn × Bk−n < v − low . Since 0 ≤ qn < 1, the left-hand
side becomes arbitrarily small as n increases, so there will
be some n for which the algorithm terminates.

Suppose the algorithm stops at point n. There are two
cases to consider:

1. V = 0.d1 . . . dn ×Bk > low

By Lemma 2, V = v − qn × Bk−n. Since 0 ≤ qn < 1,
low < V ≤ v < high.

2. V = 0.d1 . . . dn−1[dn+1]×Bk < high

By Lemma 2, V = v+(1−qn)×Bk−n. Since 0 ≤ qn < 1,
low < v < V < high.

In both cases low < V < high. 2

Theorem 4: (Correct Rounding) |V − v| ≤ Bk−n

2

Proof: There are two cases to consider:

1. V = 0.d1 . . . dn ×Bk

Since dn was not incremented, 0.d1 . . . dn−1[dn+1]×Bk

was no closer to v than V .
Thus 0.d1 . . . dn−1[dn+1]×Bk− v = (V +Bk−n)− v ≥
v − V , which is equivalent to v − V ≤ Bk−n

2
.

2. V = 0.d1 . . . dn−1[dn+1]×Bk

Since dn was incremented, 0.d1 . . . dn×Bk was no closer
to v than V . Thus v − 0.d1 . . . dn × Bk = v − (V −
Bk−n) ≥ V − v, which is equivalent to V − v ≤ Bk−n

2
.

In both cases |V − v| ≤ Bk−n

2
. 2

Theorem 5: (Minimum-Length Output) There is no (n−
1)-digit base-B number V ′ such that low < V ′ < high.

Proof: Assume by way of contradiction that V ′ ex-
ists. By Lemma 2, v − 0.d1 . . . dn−1 × Bk = qn−1 ×
Bk−(n−1), so v − 0.d1 . . . dn−1 × Bk < 1

Bn−1 and

0.d1 . . . dn−2[dn−1+1]×Bk−v < 1
Bn−1 . Thus 0.d1 . . . dn−1×

Bk and 0.d1 . . . dn−2[dn−1+1]×Bk are the two closest (n−1)-
digit base-B numbers to v.2 Consequently, there are two
cases to consider:

1. V ′ = 0.d1 . . . dn−1 ×Bk

Since the algorithm did not stop at point n − 1, V ′ =
0.d1 . . . dn−1 6> low , a contradiction.

2. V ′ = 0.d1 . . . dn−2[dn−1+1]×Bk

Since the algorithm did not stop at point n − 1, V ′ =
0.d1 . . . dn−2[dn−1+1]×Bk 6< high, a contradiction.

2

2Note that if incrementing the last digit introduces a carry, the
resulting number may extend to the left by one digit. This does not
cause a problem, however, since the last digit would be 0 and can be
eliminated.

9

