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Figure 1: Introducing David Deutsch

Adrian German (addressing the
audience1): Our next guest is the
recipient of the 2005 Edge of Com-
putation Science Prize and will be
speaking to us via video-link2 from
the University of Oxford. He pio-
neered the field of quantum compu-
tation and was the first person to
formulate a description for a quan-
tum Turing machine and to specify
an algorithm designed to run on a
quantum computer. He is also a
proponent of the many-worlds interpretation of quantum mechanics and his
new book entitled “The Beginning of Infinity” is due to appear early next
year3. Ladies and gentlemen it is with great pleasure that I am asking you
now to join me in welcoming Prof. David Deutsch. (Applause.) And with

1Talk at the 2008 Midwest NKS Conference held October 31-November 2, 2008 on the
Bloomington campus of Indiana University. Transcript by Adrian German (who was one
of the co-chairs of the conference—the other conference chair being Hector Zenil).

2Videoconference made possible through the kind and generous assistance of Angie
Day, Ian Campbell and Stig-Topp Jorgensen at the University of Oxford and Steve Egyhazi
at Indiana University Bloomington. Videostream available from the conference website
http://www.cs.indiana.edu/~dgerman/2008midwestNKSconference under the “What’s
New?” tab, along with the videos for the other keynote talks at that conference.

3The book, entitled “The Beginning of Infinity: Explanations That Transform the
World” was published in March 31, 2011 by Viking (a member of the Penguin Group).
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your permission I’d like to add just one more thing. In one of his books4

Colin Bruce writes:

“David Deutsch is to be respected for the courage of his con-
victions as regards many-worlds. Asking some scientists if they
really believe in parallel worlds is a bit like asking a modern the-
ologian if he really believes in miracles; all you discover is that
physicists can duck and weave with the best of them. Deutsch
does not try to hide behind words or philosophical cop-outs but
acknowledges that yes, parallel versions of our world are just as
real as our own, including copies in which he himself exists but
is doing different things at this moment.”

So, David, may I please say how happy and grateful we are because in
this Universe it looks like you are, in fact, going to give the talk!

David Deutsch (laughs): Thank you. (Applause.) OK, so it seems we’re
asking ourselves today “What is Computation?” and either “Does Nature
Compute?” or “How Does Nature Compute?” And there’s an amazing fact
that motivates both of these questions and indeed motivates every other
foundational question about computation as well. It is this: if you take
any physical variable whatsoever, for example “who is going to be the next
president of the United States”, to take a topical example or, another one is
“the mean temperature of the Earth’s atmosphere as a function of time”
and ask how that variable depends on other variables, then the answer
will always invariably be a computable function—or, if there’s quantum
indeterminacy involved then the probability distribution function will be a
computable function. This is because the laws of physics refer only to com-
putable functions—either directly or via computable differential equations.

Now, the reason this is amazing is that most mathematical functions are
not computable—in fact, the set of computable functions is of measure zero
in the class of all mathematical functions, let alone in the class of all math-
ematical relationships. So, there is something infinitely special about the
laws of physics as we actually find them, something exceptionally tractable,
prediction-friendly and computation-friendly. That’s clearly not accidental.
So, there’s definitely something there to be explained. But people make dif-
ferent things of it, and what they make of it depends on quite deep aspects
of their world view. Of course, religious people tend to see divine providence
in it and some evolutionists see the signature of evolution namely “apparent
design” — but at the level of “laws of nature”, to make them computable.

4Schroedinger’s Rabbits: The Many Worlds of Quantum (2004, pp. 175-6).
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And cosmologists see anthropic selection effects and computer programmer
type people, well, they see either a great computer in the sky in which we’re
all simulations, like in the movie “The Matrix” or that the Universe itself is
a computer—and either way that what we perceive as physical phenomena
are actually just virtual reality: running programs. Now, all those concep-
tions are wrong—because they all share a fatal flaw. They all have other
flaws as well, but I want to concentrate on the shared one, which is relevant
to our question, namely: “What is Computation?”

The laws of nature are, by definition, inviolable. For instance, you can’t
make a perpetual motion machine—I hope you’re seeing the slide now...

Figure 2: Both science and mathematics
are about universal and objective, but dis-
tinctly different, types of truths.

On the way here today I saw a head-
line on the BBC that said “the fu-
ture of physics is in jeopardy”. But
that is exactly what can’t happen—
the future of physics is unchanging,
inviolable, invariable. Its only what
we do that can change! So, there’s
something inviolable in the univer-
sal truths of the physical laws! And,
also, the theorems of mathematics
are inviolable. For instance, you
can’t change which of the two inte-
gers is the larger. So in both cases
inviolable refers to a fact of the mat-
ter, meaning: it can’t be argued away just by changing terms or definitions.
For instance, you could define the term perpetual motion so that a glass of
tap water is a perpetual motion machine, because the molecules are liter-
ally in perpetual motion. Nevertheless that wouldn’t enable you to use that
notion to charge up batteries in a cycle. That’s a fact of the matter. And
similarly in arithmetic you can redefine the word billion which in British
English used to mean 1012 and was then redefined down to 109 in line with
American usage but that renaming doesn’t make any actual number bigger
or smaller—and that’s another fact of the matter, but of a different kind.
So, the laws of physics and the truths of mathematics are equally inviolable,
they are universal truths and they are both about something objective. So
they’re alike in those respects but nevertheless there is a well recognized
and important difference between scientific and mathematical truths: it is
in what these fields are about. Mathematics is about absolutely necessary
truths. Such truths are all abstract and essentially they are truths about
what is or isn’t logically implied by particular axioms, but science isn’t
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about what’s implied by anything. It’s about what it is really out there
in the physical world. Laws of nature do therefore have to be consistent
but unlike mathematical axioms they also have to correspond to reality, so
that’s the fundamental difference between mathematics and science, between
theories and theorems.

Figure 3: By law of computation I mean...

Now, what about the laws of
computation? By a law of computa-
tion I mean any inviolable general-
ization (any universal truth) about
computation such as: that there ex-
ists no computer that could reliably
detect whether a program will even-
tually halt, or not, or whether it
would do any given thing. And in order to understand what computation is,
the most basic question we have to address first is into which of those two
categories do the laws, the inviolable laws of computation fall? Are they
absolutely necessary truths or are they determined by the laws of physics?

Figure 4: Into what category of truths do
the inviolable laws of computation fall?

Now the answer is that they’re
determined by the laws of physics
but there’s been a lot of confusion
in regard to that and to explain
what’s going on I have to look at
this in a slightly broader context.
The context here is that the theory
of computation which is a branch
of physics was pioneered by math-
ematicians. That is not unusual,
several other important branches of
theoretical physics were also started
by mathematicians for instance ge-
ometry and probability theory and
various theories involving the infi-
nite and the infinitesimal (i.e., cal-
culus) and indeed in many of those cases the same confusion that I am going
to describe here did arise. In terms of this distinction between reality and
necessary truth the confusion keeps arising because mathematicians tend
not to have a very firm grip on the reality.

Here’s what happens: take a mathematical idea, say—the idea of infin-
ity. Mathematicians realized centuries ago that they really can work with
infinity—they can arrogantly define, say, what an infinite set is, as one that
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can be placed in a one-one correspondence with a proper set of itself, and
then they can prove theorems about such sets and about further abstract
structures if they can consistently define them (in terms of such infinite
sets) and sometimes they can then use those mathematical structures and
theorems to formulate new scientific theories or to make existing theories
more precise. For instance—as calculus was used by Newton and Leibnitz
to formulate scientific theories about things like instantaneous velocity and
other rates of change. OK—so far so good, but notice that the concept of
instantaneous velocity in physics and in common sense doesn’t involve any-
thing infinite and indeed nothing physical is either infinite or infinitesimal
in, say, the smooth motion of a projectile; and on the other hand there’s
already an informal conception of what infinite does mean. It means big-
ger than anything merely big, or more of something than can be quantified
even in principle, more of something that can be addressed in any sequence
however long. In that conception the essence of finiteness is not about sets
or mappings, it’s about what computer theorists call effectiveness and what
physicists call measurability or preparability, durability—and those two con-
ceptions of infinity the mathematical and the physical draw the distinction
between finite and infinite at completely different places.

Figure 5: According to Simplicius, Dio-
genes the Cynic said nothing upon hear-
ing Zeno’s arguments—but stood up and
walked, in order to demonstrate the fal-
sity of Zeno’s conclusions.

And that is essentially how Zeno
of Elea in his famous paradox man-
aged to conclude that Achilles will
never overtake the tortoise, if the
tortoise has a head start—because
by the time Achilles reaches the
point where the tortoise is now, the
tortoise will have moved on a lit-
tle, and by the time he reaches that
point, it will have moved on a lit-
tle further—and so on ad infinitum.
And thus, the catching-up process
requires Achilles to perform an in-
finite number of catching-up steps
which—as a finite being—he pre-
sumably cannot do.

Presumably, but did you see
what Zeno did just there? He just
presumed that a particular mathematical notion that happens to be called
“infinity” faithfully captures the distinction between finite and infinite, and
was thus relevant to a particular situation in physics. And he was simply
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wrong. So, he succeeded only in confusing himself and there’s nothing more
to his paradox than that mistake. The truth is that what Achilles can or
can’t do cannot be deduced from mathematics, or a priori , in any way. It
depends entirely on what the relevant laws of physics say. If they say that
he’ll overtake the tortoise in a given time, then he’ll overtake it. If that
happens to involve an infinite number of steps of the form “go to where the
tortoise is now” then he’ll do an infinite number of such steps. If it involves
his passing through an uncountable infinity of points in space then that’s
what he does—but nothing physically infinite has happened. And, by the
way, what did happen didn’t happen in steps!

OK, well, the distinction between finite and infinite is also at the heart of
the theory of computation. For instance, an effective algorithm is defined as
one that halts after a finite number of steps, where a step has to be defined
according to a finite list of rules. And a rule has to be finitely executable.
And so on. Now these requirements were implemented in the classical theory
of computation which was pioneered by Alan Turing but they date back
to mathematical requirements set by the mathematician David Hilbert in
1900 with the intention of formalizing the concept of mathematical proof.
In fact, classical computations are essentially the same things as proofs in
Hilbert’s and Turing’s sense because every valid proof is a computation of
the conclusion from the premises and every correctly executed computation
is a proof that the output is the result of the given operations on the input.
Hilbert had required finiteness conditions, he had required that proofs use
only a fixed, finite set of rules of inference and executing a proof had to take
only a finite number of elementary steps and the steps themselves had to be
finite—so you recognize that from the theory of computation, that’s exactly
where finiteness, effectiveness came from in the theory of computation.

Now Hilbert contemptuously ridiculed the idea that his finiteness re-
quirements were substantive ones, but do you see that he was thereby making
exactly the same fundamental mistake as Zeno was? He was assuming that
a particular mathematical distinction between finite and infinite in regard
to steps and axioms and so on was self-evidently the one that corresponds
to doable, the effective, thinkable and provable in physical objects—such as
the brain of mathematicians. Fortunately, Hilbert’s intuition about finite
and infinite unlike the one that Zeno tried to implement did match physics
(and as far as we know even quantum physics) so his conceptual mistake
didn’t do all that much harm at first and Turing’s implementation of it was
therefore enormously successful and fruitful. But the point is that if the
laws of physics were kind of different from what we currently think they
are then so might be the set of mathematical truths that we then would be
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able to prove, and so might be operations that we’d be able to use to prove
them with. The laws of physics that we know happen to afford a privileged
position to such operations as AND and OR and NOT and to the concatenation
of functions and to individual bits of information. But if instead they were
based on, say, Turing machines as elementary objects instead of points and
so on, and if the laws of motion depended on functions like “does this halt?”
instead of on differential equations then one could compute using opera-
tions which with our physics we call non-computable. Well, perhaps, the
functions that seem natural and elementary to us would be non-computable
in that physics. Similarly it’s not just a distinction between computable
and non-computable that depends on the laws of physics but also a very
important distinction between simple and complex. We now know, because
of quantum computation, that Turing’s and Hilbert’s conceptions of what
is simple and complex is not reflected in real physics. Quantum compu-
tation drives a coach and horses through the intuitive notion of simple or
elementary operation and it makes some intuitively complex things simple.

It might be objected that quantum computation—therefore—isn’t real
computation, it’s just physics, just engineering, and it might be argued that
the logical possibilities that I have just been describing (that would enable
exotic forms of physics which would then enable exotic forms of computa-
tion) likewise don’t address the issue of what a proof really is, or what a
computation really is. So, more precisely the objection would go something
like this: “Under suitable laws of physics we would be able to compute non-
Turing computable functions but that wouldn’t be genuine computation;
and similarly we might be able to establish truth or falsity of undecidable
mathematical propositions, but then again that ‘establishing’ wouldn’t be
the same as genuinely proving—because then our knowledge of whether the
proposition was true or false would forever depend on our knowledge of what
the laws of physics really are. If we discovered one day that the real laws
of physics are different we might have to change our mind about the proof,
too, and its conclusion and so it wouldn’t really be a proof (so the objection
runs) because real proof is independent of physics.”

Wrong! That objection is nonsense, because it would apply equally well
to any proof. Our knowledge of whether a proposition is true or false al-
ways depends on our knowledge about how physical objects behave, be they
computers or our own brains! If we changed our minds about what physi-
cally a computer or a brain has been doing, and in principle the changing
of our minds could be due to changing our minds about what the laws of
physics are—that they’re not what we thought they were, for instance if
we decided that when formulae become sufficiently complex computers or
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brains are subject to, and there’s a different term in the equations of motion
that comes in and causes systematic false memories (this is a little bit like
Roger Penrose’s idea about what happens to the wave function when infor-
mation becomes more complex than a certain amount)—then we’d be forced
to change our opinion about whether we proved something or not and possi-
bly about whether we know it to be true or not. And here I must stress that
whether a mathematical proposition is true or false is completely, that is,
indeed completely independent of physics but proof is 100% physics, proofs
are not abstract, there is no such thing as abstractly proving something just
as there is no such thing as abstractly calculating or computing something.
One can of course define a class of abstract entities and call them proofs,
just like you can define a perpetual motion machine to be something else,
one can define abstract entities and call them computations but those proofs
can’t do the job of verifying mathematical statements, they’re not effective
or doable. A mathematical theory of proofs therefore has no bearing on
which proofs can or cannot be proved in reality or known in reality and
similarly, a theory of abstract computation as well has no bearing on what
can or cannot be computed in reality.

Figure 6: A computation is a physical
process in which physical objects (like
computers, or slide rules or brains) are
used to discover, or to demonstrate, or to
harness properties of abstract objects like
numbers and equations. Hence the reli-
ability of our knowledge of mathematics,
nothing to do with whether propositions
are true or false, just our knowledge of
mathematics, remains forever subsidiary
to our knowledge of physical reality.

So, what is provable or unprov-
able is determined by the laws of
physics in exactly the same sense as
“what the angles of a triangle add
up to” is determined by the laws
of physics. Immanuel Kant thought
that Euclidean geometry was self-
evidently true—and that’s another
example of the same misconception
that I’ve been talking about. The
truth is that you can define abstract
entities and call them triangles and
have them obey Euclidian geome-
try but if you do that you can’t
then infer anything from that the-
ory about, say, what angle you’ll
turn through if you walk around
the closed path consisting of three
straight lines—that thing might not
be a triangle as you have defined it.
Likewise in probability theory you can define abstract quantities that obey
a certain calculus about mutually exclusive alternative events and you can
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call those quantities probabilities but in that case your theory tells you noth-
ing about how you should bet in current events and, of course, in quantum
theory real probabilities do not even obey those axioms of the probability
calculus that refer to alternative intermediate events.

Figure 7: So, contrary to what Hilbert
thought, contrary to what mathemati-
cians since antiquity believed (and con-
tinue to believe to this day) proof the-
ory can never be made into a branch of
mathematics—nor is it healthful to think
of it as a metamathematics, as its some-
times known. Proof theory is a science,
and specifically—it is computer science.

So, quite generally: things that
happen in reality are governed by
the laws of physics, period. And
therefore I can now give the defini-
tive answer to the question that
is the title of my talk and the ti-
tle of the conference: “What is (a)
computation?” A computation is a
physical process in which physical
objects like computers, or slide rules
or brains are used to discover, or to
demonstrate or to harness proper-
ties of abstract objects—like num-
bers and equations. How can they
do that? The answer is that we use
them only in situations where to the
best of our understanding the laws
of physics will cause physical vari-
ables like electric currents in com-
puters (representing bits) faithfully to mimic the abstract entities that we’re
interested in. The reliability of the proof therefore depends on the accuracy
with which those physical symbols do indeed mimic the abstract entities
of interest. If we changed our mind about what the laws of physics are,
we might indeed have to change our mind about whether a proposition we
thought we’d proved was really true.

Hence the reliability of our knowledge of mathematics, nothing to do with
whether propositions are true or false, just our knowledge of mathematics
remains forever subsidiary to our knowledge of physical reality. Every math-
ematical proof depends absolutely, for its validity, on our being right about
the rules that govern the behavior of some physical object like computers, or
ink and paper, or our brains. So, contrary to what Hilbert thought, contrary
to what mathematicians since antiquity believed and continue to believe to
this day, proof theory can never be made into a branch of mathematics
nor is it healthful to think of it as a metamathematics, as it’s sometimes
known. Proof theory is a science, and specifically it is computer science. So
that’s what computers are, that’s what computation is, that’s what proofs
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are—physical phenomena. That enables me now to tie into the subsidiary
question: “Does Nature Compute?” or “How Does Nature Compute?” So,
well, in one sense: yes, of course, computations are physical processes and
every physical process can be regarded as a computation if we just label,
give abstract labels to all the input states and all the output states and then
just let the system evolve under the laws of physics. But precisely because
you could always do that—no matter what the world was like—calling ev-
erything a computation doesn’t in itself gain us any understanding of the
world, but the world also has that amazing property that I referred to at
the beginning: more broadly, its computational universality. All those dif-
ferent computations embodied in physical processes are expressible in terms
of a single finite set of elementary physical operations. They share a sin-
gle, uniform, physical distinction between finite and infinite operations, and
they can all be programmed to be performed on a single physical object: a
universal computer, a universal quantum computer to be exact. And that’s
an object that can perform every computation that every other physically
possible object can perform. And to the best of our knowledge the laws of
physics do have that property of computational universality and its because
of that that physical objects like ourselves can understand other physical
objects (i.e., to do science). And it’s also because of that same universality
that mathematicians (like Hilbert) can build up an intuition of proof and
then mistakenly think that it’s independent of physics. It’s not independent
of physics, it’s just universal in the physics that governs our world.

But in the class of all possible universes that cosmologists nowadays
postulate—not the many universes from quantum theory but the cosmolog-
ical ones with all different laws of physics—most of them have other, very
different laws of physics than ours, and in most of those there’s no compu-
tational universality. In a tiny subclass (but still infinite though) there is
universality but with all sorts of different computable functions—and also,
all sorts of different measures of what is simple and complex in those worlds,
and all sorts of different criteria for what is finite and infinite in those worlds.

In some of those universes there are analogues of David Hilbert or Alan
Turing each of them reaching towards a different conception of what counts
as mathematically proving something, what counts as computing something.
And there are also lots of Stephen Wolframs, each of them seeking to base
a new kind of physics on what they respectively experience as inherently
simple, inherently simple self-evident computational foundations beneath
his Universe’s contingent laws of physics. But, in reality there is no such
distinction as simple versus complex, or finite versus infinite except as the
laws of physics dictate. There is no mathematically preferred conception
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of computation, or computability, or finiteness, or simplicity. Absolutely
nothing other than physics (and the cultural preferences that it conditions
in us) singles out Turing computable functions or cellular automata or even
quantum computation, or quantum cellular automata, as being fundamental,
or special, or elementary in any way. In fact there is nothing that singles
out the computational functions at all, nor bits, logical variables, as being
the fundamental forms of data on which computations operate.

There is nothing deeper known about the physical world than the laws
of physics. And, I think, there is nothing deeper known within physics than
the quantum theory of computation. And for that reason I entirely agree
that it’s likely to be fruitful to recast our conception of the world and of
the laws of physics and physical processes in computational terms, and to
connect fully with reality it would have to be in quantum computational
terms. But computers have to be conceived as being inside the universe,
subject to its laws, not somehow prior to the universe, generating its laws.

The latter is the very misconception that led Zeno astray, and Hilbert
and Kant, and many other thinkers throughout history, who haven’t realized
that while truth can be absolutely necessary and transcendent, all knowledge
(even of such truths) is generated, computed, by physical processes, and
the scope and limitations of such knowledge are conditioned by Nature’s
contingent laws. Thank you very much. (Applause)

Questions & Answers

Question: Would you consider an experiment, a physical experiment, to
be a computation?
Answer: Are you asking about a specifical experiment, or a specifical phys-
ical process?
Q: No, in general.
A: Yes, you can always regard any physical experiment as a computation.
If the outcome is unknown then it’s a computation where we are probing
what the computer is doing, and if the outcome is known—that is, if the
laws are known—then what we are doing is transforming the input into the
output. But in order to make an experiment into a computation you have
to label everything, you have to give labels to all the inputs, states and to
all the outputs...
Q: Great. Let me then have a follow-up question on that.
A: Sure.
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Q: So, suppose you perform an experiment5 and you figure out that Nature
tells you that the answer to your question, to your computation, takes a
polynomial number of steps—so the answer is in fact polynomially complex6.
A: Ah, wait—an experiment can’t tell you that!
Q: Well, you do the experiment and you ask the question, for example, how
many resources you need in order to determine (or measure) a very specifical
physical quantity with a certain error...
A: Yes—but you can only do that for a finite number of times, so you
can’t tell if for large inputs it’s going to be polynomial or not. In order to
tell whether the resources are indeed polynomial you have to know how it
behaves for arbitrarily large values of the inputs.
Q: That’s right, that’s right ...
A: ... and you can only do it for a finite number of experiments.
Q: I understand that. Now my question is this: suppose that with the well-
known laws of nature (with quantum physics) I cannot find an algorithm
that performs the same thing with the same complexity.
A: Yes.
Q: What would you say then, what would you conclude about the laws of
nature as we know them? Would you conclude that quantum mechanics is
not the right representation of how nature works, or ... what am I missing?
A: Well, I am not entirely sure that I understand what your proposed exper-
iment is. But if you indeed find that ... I mean, the idea is that you guess,
you conjecture what the laws of physics are, which tell us what to conjecture
about what our computer will do. If we find that a real physical process can
compute something—appears to be able to compute something—in polyno-
mial time that no algorithm (as given by the laws of nature as we know
them) will compute in polynomial time, we can then indeed conclude that
the laws that you thought were operating the device are in fact not the true
laws operating the device. So if that’s the question you’re asking then the

5This question may have originally aimed to ask whether quantum mechanics is in fact
a good model of reality, maybe in the sense of one of Sir Roger Penrose’s interpretations
(see, e.g., http://www.cs.indiana.edu/~dgerman/penrose.pdf) or was perhaps aimed to
be considered in the larger context of “simulating of reality” (with computers, in real time
or any plausible kind of time).

6This is an additional indication that the question has something to do with the 1967
Feynman quote from “The Character of Physical Law” that was the motto of our confer-
ence: “It always bothers me that, according to the laws as we understand them today,
it takes a computing machine an infinite number of logical operations to figure out what
goes on in no matter how tiny a region of space, and no matter how tiny a region of time.
How can all that be going on in that tiny space? Why should it take an infinite amount
of logic to figure out what one tiny piece of space/time is going to do?”
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answer is definitely: yes.
Q: Very good. Thank you very much.
New Question: Can you hear me or should I use the microphone?
Answer: I can hear you very well7.
Q: I completely agree that maybe mathematical concepts have a root in
reality and I also agree that some mathematicians forget it sometimes. Yet
it seems that there’s always an abstraction step that is needed to go from the
root of the concept in reality to the concept itself. If we take a very simple
concept, for example the concept of natural number—of course it’s rooted in
notion of calculability and the notion of calculability is rooted in the notion
of physical object. But if we restrict to just what we see around us, the
reality we (as finite human beings) can perceive around us we might take
the point of view which says for example that there’s a maximum natural
number and no successor.
A: Yes, and that would be silly.
Q: In some sense these abstraction steps free us from this limitation that
for some reason we have and that we don’t even want to consider.
A: Yes.
Q: So in this respect, although it is rooted in reality the concept of natural
number is not in reality itself—it’s abstracted from reality.
A: Yes. Well, it is not in physical reality at any rate. I mean, one could
argue that mathematical entities are real in a different sense, in that they
have autonomous properties that we didn’t necessarily cook into them. But
yes—as I stressed in my talk—mathematical truth really is independent of
physics, it is only knowledge of mathematics that is constrained by what the
laws of physics say. So there’s this enormous realm of mathematical truths
which is independent of what the laws of physics are and there’s a window
on that—a tiny window—which has the truths that we can know. And that
window is determined by the laws of physics.
Q: What is true of natural number is true of proofs too. So, for instance,
the mathematical notion of proof abstracts from what can be found in the
reality.

7We had four videotalks at the conference: Charles Bennett (IBM) and Seth Lloyd
(MIT) spoke on the first day while this talk from Oxford followed by Lev Grover’s (from
Bell Labs) were on the second day. All audio and video connections were excellent but
this particular connection to Oxford was somehow far better than all the other three, far
better than the most optimistic of our expectations in the sense that Prof. Deutsch was
able to hear what was spoken in our amphitheater a little bit better than we (that were in
that room) seemed to be able to hear and understand each other. This may have factored
slightly in how the first couple of questions were asked until the audience adjusted to the
unexpected high quality of the audio and video link.
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A: Yes, yes. So it goes like this: you can have physical intuitions about
things which are really intuitions about what the laws of nature are and
then you can abstract to make nicer mathematical quantities that don’t
have arbitrary restrictions on them. And subsequently you can guess that
those mathematical quantities are also instantiated in real physical objects.
So the class of mathematical truths that we can know about is much larger
than the class that we can know. But there might be other things [that] we
can’t even know about! Presumably there are, because the infinities involved
would be simply too large to allow knowing about them; well, I suppose we
know about them in that sense.

So, yes: I think I agree. Possibly you’re making a subtle point that I
haven’t picked up but, yes: proofs arise from a physical intuition. We then
form a mathematical conception, a mathematical abstraction, which we call
proofs and then we conjecture that that mathematical conception is actually
genuinely true in physics. But we could be wrong about that last step! The
mathematical object(s) we have set up and called the “proofs”, or “laws of
inference” and such may simply not correspond to reality and then—or we
may not know the correspondent even approximately—and then it’s the set
of things that we really can prove with physics that are the provable things
not the ones that that mathematical conceptions might end up proving,
because that is not effective in that case.
Q: Thank you.
New Question: I liked your talk, I have one question about computability.
You said in the beginning that most, in fact all functions in physics are
computable. And I wonder if whether it’s as you said (that it’s a miracle)
or whether there’s some explanation for that. And maybe just a simple
possible explanation is that all of physics is in fact expressed in terms of
ordinary differential equations and there are fundamental and general exis-
tence theorems for these equations and so on, stating that in such and such
case there will always be a solution to them and only one. And when one
uses computable tools to model the world that’s also when what one models
appears as having been already computable all along. Because if you look
at the history of physics—physics usually shies away from theories that are
not deterministic or are heuristic and maybe this is the reason why when we
express a lot of physics in such a way that it would be only deterministic and
maybe this is the reason for which every function in physics is computable.
Answer: Well, it’s not a matter of arbitrary choice on the part of physicists.
Physicists are trying to make the lowest fit experiment and it turns out
that the laws as we think they are have this property—for instance they
are differential equations and not just any old differential equations, but
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well-posed differential equations which have this property of computability.
Now, I guess one can—this is a bit like the anthropic principle reasoning—
I guess one can be amazed by this or not. I think I am amazed by it,
because in the bigger picture of mathematics these things are very special.
And we don’t know of any mechanism or reason why the actual laws of
physics should be expressed in terms of those special kinds of differential
equations. And actually even among that small set of differential equations
are the particularly simple ones that appear to be actually implemented. So
we don’t know why, and some cosmologists say it’s an anthropic selection
effect: observers that can ask such questions only exist in universes where
evolution happens and evolution is the kind of computation that depends on
the existence of simple computability. And I don’t think that that’s the full
argument, myself. That would take us off on a tangent here but although
that may be true it can’t possibly be a sufficient reason for why the laws of
physics are as they are because the set of all possible laws of physics doesn’t
even have a measure on it and so this reasoning about “most of them do
one thing and the rest do another” hasn’t really got any basis.
New Question: I would like to—I like very much your position and your
talk but I would like to point out a possible similarity between mathematics
and physics. You know, if you look at mathematics, say, 200 years ago—most
functions were continuous. And people believed, that indeed all functions
were continuous. And when they started understanding better and using
better tools, they discovered that most functions are not continuous. So
maybe this is just a historical moment/accident when physics looked for
laws that can be expressed by computable functions and not something that
is motivated by some good reason—but simply a historic effect.
Answer: Well, it can’t be a purely historic effect because the laws of physics,
as we currently believe they are, are extremely successful whether, you know,
there may be corrections to them and there may be regimes in which they
are completely wrong but they are—it is already a miracle that the physical
world is as computable as it seems to be, even if in some other respects it may
turn out to be non-computable or discontinuous functions or not be going
by differential equations. It’s already a miracle that it is as computable
as it is. So there is definitely something out there! It’s not just that we
decided to look in one place—we decided to look in one place and we found
computability and that’s already a miracle.
Q: Well, it’s a miracle also that for instance in engineering you now if you
look at you know buildings, bridges planes they all are built with contin-
uous functions! So you can say you know this is all in the imagination of
mathematicians and discontinuities and you know all sort of sophisticated
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deviations [in fact] appear. But if you look at the pragmatic view you know
one could say that from the point of view of engineering only continuous
functions come and exist.
A: Yes, but then engineering has been successful at least up to a point. Prior
to the scientific age people tried all sorts of different kinds of explanations—
anthropocentric type explanations, in which physical processes were gov-
erned by the intentions of supernatural beings, and that kind of thing... and
they were looking for explanations in those terms and those explanations
never were successful. So the fact that we can now build bridges using as-
sumptions of continuous functions and so on, even if later turns out that it’s
just an approximation that’s already something that we don’t know how to
explain! Why are computable functions available to build bridges with? It’s
not just that we looked for them, we also found them.
New Question: I would like to know a bit more about explanations re-
lated to physics being miraculously computable and would this make our
Universe more [special] among other alternatives just because those are not
computable and of course the condition of evolution being more likely...
Answer: As I said I don’t think that can be the full explanation of this
mystery. It could be that there are all sorts of Universes with different laws
of physics and it could be that in most of them in some sense there are no
observers. However there has to be a structure on this class of Universes—
such that most of them “make sense”. The set of all possible laws (which
is not a set but a class) is too enormous for the concept of “most of them
do one thing while a few of them do another” to make sense. You can’t
attack this problem purely with anthropic reasoning. The answer must be
some kind of explanation of why the laws are as they are or at least why
the measure of all possible laws is as it is—that kind of thing. So if you’re
asking is anthropic reasoning enough to explain all of this: I think not.
Q: Well, the interesting situation with computability is that obviously com-
putable functions are of measure C and I imagine that in all alternative
universes [that there is a] favorable choice [with a different complexity mea-
sure] is very unlikely.
A: Yes, quite so. So there’s something to explain—it’s not just selection.
Moderator: We can take only one more question—it’s all the time we
have8. Let’s choose someone that hasn’t asked any question yet. Go ahead...
Last Question: In your position that proofs are things that are com-
putable in physical reality and mathematical proofs are [idealizations] I was
interested in [knowing] how this relates with the difference between classical

8Lev Grover was already connected from Bell Labs and ready for his video talk
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proofs and constructive proofs [as in] classical logic and constructor logic.
Answer: Well, I know next to nothing about that but I think I can tell
you what the situation basically is. Like I said proof theory is a science.
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And one of the changes that one has
to make already, you know, never-
mind these exotic laws of physics
that might exist the change that you
already have to make with quan-
tum computation is that we can no
longer say, we can no longer define
a proof as an object—that is, tra-
ditionally we thought of a proof as
something that we can present on a
piece of paper that satisfies certain
laws: that in the beginning there
must be axioms, and that it pro-
ceeds in lines and then each line
must follow from the axioms accord-
ing to a certain set of laws of inference and then the last line is the
conclusion—and we say that the conclusion is proof from the axioms. Now
in quantum theory that is no longer sufficient, there are other kinds of proofs
that cannot be expressed in that way at least not in [a] tractable—not in
a polynomial number of steps. There are proofs where there is not enough
paper in the universe to express them in that way—but a quantum com-
puter could nevertheless prove them and for that reason you have to change
your [entire perspective]. In classical physics and in classical theory of com-
putation the idea of a proof as an object obeying several laws and the idea
of a proof as a process where you execute one operation after another are
equivalent—that is, there is a one to one correspondence between those two
conceptions but in quantum computation there isn’t a one to one corre-
spondence and it’s possible that some things that can be done in a small
number of single steps can’t be expressed in an exponentially large object.
So those distinctions between different kinds of proofs are induced by the
laws of physics and if the laws of physics are different the classification of
proofs will be different as well.
Moderator: Unfortunately I think we are going to have to finish here. So
let’s thank Prof. David Deutsch one more time. (Applause) Thank you very
much once again and we’re going to disconnect now...
David Deutsch: Thanks for having me, and nice meeting you.
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